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ABSTRACT We show that long- and short-
range interactions in almost all protein native struc-
tures are actually consistent with each other for
coarse-grained energy scales; specifically we mean
the long-range inter-residue contact energies and
the short-range secondary structure energies based
on peptide dihedral angles, which are potentials of
mean force evaluated from residue distributions
observed in protein native structures. This consis-
tency is observed at equilibrium in sequence space
rather than in conformational space. Statistical en-
sembles of sequences are generated by exchanging
residues for each of 797 protein native structures
with the Metropolis method. It is shown that adding
the other category of interaction to either the short-
or long-range interactions decreases the means and
variances of those energies for essentially all pro-
tein native structures, indicating that both interac-
tions consistently work by more-or-less restricting
sequence spaces available to one of the interactions.
In addition to this consistency, independence by
these interaction classes is also indicated by the fact
that there are almost no correlations between them
when equilibrated using both interactions and sig-
nificant but small, positive correlations at equilib-
rium using only one of the interactions. Evidence is
provided that protein native sequences can be re-
garded approximately as samples from the statisti-
cal ensembles of sequences with these energy scales
and that all proteins have the same effective confor-
mational temperature. Designing protein struc-
tures and sequences to be consistent and minimally
frustrated among the various interactions is a most
effective way to increase protein stability and fold-
ability. Proteins 2003;50:35–43. © 2002 Wiley-Liss, Inc.
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INTRODUCTION

The feature of consistency among interactions in protein
native structures was first noticed by Ptitsyn and Finkel-
stein1 and by Go2 as an effective way for proteins to
increase their structural stabilities. There are several
pieces of evidence that explicitly show such a consistency
between interactions. It was reported that native side-
chain conformations could be well predicted by taking
account of only side chain-backbone interactions if all
backbone atoms are fixed in their native conformation,3

although the side chain-side chain interactions contribute
to the stabilization of the native conformations of side
chains.4 This fact supports an overall consistency between
side chain-side chain and side chain-backbone interac-
tions.

On the other hand, Bryngelson and Wolynes5 observed
the complexity of the energy surface in protein conforma-
tional space and pointed out that the energy landscape for
natural proteins must be minimally frustrated between
smooth and rough energy landscapes and must resemble
funnels for proteins to fold within reasonable times. A
rough energy landscape, a frustrated situation that is
caused by many competing interactions, is a characteristic
of random heteropolymers, which often exhibit glass tran-
sitions where the system can be trapped in one of the lower
energy states at a transition temperature. To the contrary,
natural proteins have a unique feature of smoothing the
energy landscape on a coarse-grained conformational scale
and hence are capable of folding into single stable struc-
tures within a limited time.6 Thus, minimal frustration
and consistency between interactions are essential for the
stability and foldability of protein structures. This concept
was also used to define independently folding units.7

Here, we examine whether or not short- and long-range
interactions between residues, i.e., locally or distantly
located along amino acid chains, in protein native struc-
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tures are consistent with each other for sequence selection
of the more stable sequences for each protein. Sequence
space is searched instead of conformational space by
exchanging amino acids within each protein. This main-
tains the composition. Among many kinds of interactions
operative in protein structures, the two classes of interac-
tions playing different roles in protein folding are chosen
to be examined here. Then, consistencies between short-
and long-range interactions are examined for their effects
on the mean and the variance of interaction energies at
statistical equilibrium in sequence space. Random se-
quence samples are generated with the Metropolis Monte
Carlo method8 by exchanging amino acids in the native
structure of each protein. The long- and short-range
interaction potentials used here are the contact poten-
tials9–11 between the 20 kinds of amino acids and the
secondary structure potentials,12 based on peptide dihe-
dral angles evaluated according to the methods previously
reported by us.

It is shown that adding the other class of interaction to
either contact energy or secondary structure energy de-
creases the mean and also the variance of those energies at
equilibrium in sequence space for the almost all protein
native structures. There is virtually no correlation be-
tween these types of energies at statistical equilibrium
when the equilibration uses both classes of interactions,
but almost all proteins show positive covariances between
the two classes for the statistical equilibrium using only
one class. These facts indicate that both classes of interac-
tions work consistently by restricting the sequence space
available to one class of interactions but that they act
almost independently near the minimum in the total
energy surface.

It is also shown here that contact energies and second-
ary structure energies of almost all native proteins fall
within �2 SDs of the equilibrium mean for each protein
and that there is no correlation between them. These
features indicate that protein native sequences can be
regarded approximately as samples from the statistical
ensembles of sequences with these energy scales and that
in addition all proteins have the same conformational
temperature.13

MATERIALS AND METHODS
Stability of Protein Sequence and Structure

The stability of a specific conformation for a protein
sequence is determined relative to the whole ensemble of
protein conformations. Let us define an effective free
energy, �, to represent the stability of a sequence-
structure pair, i.e., probability P(s, i) of a specific conforma-
tion s for sequence i, as

���s�i� � �log�P�s�i�� (1)

� �Econf�s, i� � log��
s

exp���Econf�s, i��� (2)

where � is equal to 1/kT, k is the Boltzmann constant, T is
temperature, Econf(s, i) is the conformational energy of the

conformational state s of sequence i, and the sum is taken
over all possible conformations.

How can we estimate the second term of Equation 2,
which serves as a reference energy for � to measure
relative protein stability? Analyses using the Random
Energy Model approximation suggest that the contribu-
tion to the partition function from non-native conforma-
tions depends primarily on amino acid composition rather
than on sequence at sufficiently high temperature T � Tc,
where Tc is the temperature of the “freezing” transition in
a random heteropolymer having the same amino acid
composition.18,19 For sequence space optimization of simple
lattice proteins, estimating Equation 2 has been at-
tempted directly. The partition function was estimated by
dual Monte-Carlo simulations,15 by the first cumulant in a
high-temperature expansion,16 and by a cumulant expan-
sion approximation.17 Z scores have been successfully
used instead of energy for sequence space optimization of
simple lattice proteins under the unrestrictive condition of
amino acid composition.14

Here, the second term in Equation 2 is approximated by
including only dominant terms in the summation of Boltz-
mann factors over all conformations, i.e., only native-like
compact conformations. Native-like conformations mean
compact conformations in which nonpolar residues tend to
be located inside the globules. In other words, we consider
only conditions under which such native-like conforma-
tions are dominant in the conformational ensemble. Then
the log function is evaluated in a high-temperature expan-
sion approximation; this is similar in concept to the work
of Deutsch and Kurosky.16

log��
s

exp���Econf�s, i���
� log� �

s � �native-like�

exp���Econf�s, i���
� log� �

s � �native-like�

1�
� � �

s � �native-like�

Econf�s, i��� �
s � �native-like�

1�
� nr� � �	Econf�s, i�
� � 0, native-like conf. (3)

where nr is the sequence length of a protein and � is a
constant to represent the conformational entropy per
residue in k units for native-like structures. Thus, the
effective free energy �(s, i) to represent the stability of
conformation s and sequence i may be approximated as

���s�i� � ���s, i� � nr� (4)

where �(s, i) is the conformational energy relative to the
average over native-like conformations;

���s, i� � �Econf�s, i� � � 	Econf�s, i�
� � 0, native-like conf. (5)
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Coarse-grained Conformational Energy

Short- and long-range interaction energies considered
here are specifically those for secondary structure interac-
tions and pairwise interactions at the residue level in
protein structures. Both interactions are estimated by
using simple empirical potentials, a secondary structure
potential12 and a contact potential,9–11 which are poten-
tials of mean force evaluated from the observed distribu-
tions of peptide dihedral angles (�, �) and contacting
residue pairs. For the secondary structure potential, the
interaction potential between a tripeptide in a conforma-
tional state (s � 1, s0, s1) and a side chain of type i0 located
at its center, es � es(s � 1, i0, s0, s1) defined in Equation 6
of Miyazawa and Jernigan,12 is employed here; peptide
conformations were classified here into five states, �, �,
proline �, left-handed �, and left-handed �, based on
peptide dihedral angles. Intrinsic energies of backbone-
backbone interactions are not included in the secondary
structure energies, because they are invariant for a given
structure. The total secondary structure energy Es(s, i) of
conformation s for sequence i is represented as

Es�s, i� � �
p

es�sp � 1, ip, sp, sp � 1� (6)

	Es�s, i�
� � 0, native-like conf. � �
p

	es�sp � 1, ip, sp, sp � 1�
all natives

(7)

where ip and sp mean the type of amino acid and the
conformational state of residue at position p in sequence. The
unweighted averages of es(sp � 1, ip, sp, sp � 1) over native-
like conformations are approximated as the averages over all
positions of residue type ip in all protein structures.

Likewise contact energies having as a reference the
collapse energy err, that is, eij � err are used here; the total
collapse energy depends on structures but not on se-
quences.10,11,20,21 r is an average residue and i and j are
specific residue types in contact. The total contact energy
Ec(s, i) is represented as

Ec�s, i� �
1
2 �

p
�

j
nipj

c �eipj � err� (8)

	Ec�s, i�
� � 0, native-like conf. �
1
2�p 	nipj

c 
all natives�eipj � err� (9)

where nipj
c is the number of residues of type j in contact

with residue of type i at position p. The unweighted
averages of nipj

c over native-like conformations are approxi-
mated as the averages over all positions of residue type ip
in the native structures of all proteins.

It must be noted here that the approximations of Equation
7 and Equation 9 can be applied to sequences that can fold
into a stable structure but that they cannot be used for a
function, Equation 5, for sequence space optimization of
proteins under the unrestricted condition of amino acid
composition, because the unweighted averages of es(sp � 1,
ip, sp, sp � 1) and nipj

c over native-like compact structures for
most sequences in sequence space may depart significantly

from those for known protein structures. It was shown for
lattice proteins that optimizing the Z score instead of energy
can yield more stable and more foldable sequences.14 Here
ensembles of sequences whose amino acid compositions are
taken to be those of native proteins are used.

These secondary structure potentials for the 20 types of
amino acids and contact energies between them are re-
estimated here from the new set of 2129 protein species
representatives with the sampling method10 and with the
parameters evaluated in Miyazawa and Jernigan11 to
statistically estimate contact energies; refer to the section
“Datasets of protein structures used” for the protein
selection. Sampling weights for proteins are calculated
according to the method reported in Miyazawa and Jerni-
gan,10 but identities �0.2 are regarded as 0 for alignments
between proteins; as a result, the effective number of
proteins used is reduced to 1658.

Statistical Ensemble of Sequences

Let us consider a statistical ensemble of sequences
having probabilities P(i�s), which are the conditional prob-
abilities of sequence i for a given structure s, represented
according to Bayes’ rule.

P�i�s� � P�s�i�P�i���
i

P�s�i�P�i� (10)

P�i� � constant (11)

where the sum over i means the sum over all sequences
with fixed length for a given structure; here, we consider
only sequences having the same amino acid composition as
the native sequence. The conditional probability P(s�i) of a
specific conformation s for a given sequence i is defined by
Equation 2 and is calculated from Equation 4 and Equa-
tion 5. P(i) is the a priori probability of a sequence i and is
taken to be the same for all sequences. Then, the probabil-
ity of sequence i for a given structure s can be calculated as

P�i�s� �
1
�

exp�����s, i�� (12)

� � �
i

exp�����s, i�� (13)

The second term in Equation 4 is ignored here because it
depends only on sequence length and does not depend on
amino acid composition and is therefore constant for the
same structure. Although the second term, the average
conformational energy of native-like structures, in Equa-
tion 5 is also constant for a given structure, it is included to
permit comparisons of these effective energies between
different proteins; here it should be noted that terms are
included if they depend on amino acid composition, even
though they are constant for a given structure; thus,
backbone-backbone interactions and the collapse energy
err are removed in the estimation of secondary structure
energies of Equation 6 and for contact energies of Equation
8, respectively. � is the partition function for the present
statistical ensemble of sequences.
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Here we examine whether or not short- and long-range
interactions are frustrated in sequence space rather than
in conformational space by calculating various types of
statistical averages of short- and long-range interaction
energies, over sequences using probability P(i�s) of Equa-
tion 12, at equilibrium in sequence space. In the following,
we use the notation of the statistical averages 	X
Y below:

	X
Y �
1

��Y� �
i

X�s, i�exp���Y�s, i�� (14)

��Y� � �
i

exp���Y�s, i��

X and Y can be short-range, long-range interaction energy,
or the sum of both energies. Here it should be noted that in
Equation 14 energies are averaged in sequence space with
a statistical weight (Boltzmann factor) and so only se-
quences which are similar to the native sequences and are
compatible with the native structures will contribute
significantly to the statistical averages of the energies.

For example, one of the statistical averages calculated
will be

	�c
�s � �c �
1
� �

i

�c�s, i�exp�����s�s, i� � �c�s, i��� (15)

where the superscripts, s and c, refer to secondary struc-
ture energy and contact energy, respectively. Also, the
variance of energies such as 	(��c)2
�s

� �c is calculated,
where

�� � � � 	�
 (16)

These statistical averages in sequence space are based on
sets of equilibrium ensembles of sequences generated with
Monte Carlo simulations for 797 representative proteins
taken from the list of protein families in the SCOP
database.22

Monte Carlo Simulations to Generate the
Statistical Ensemble of Sequences

The statistical ensemble of sequences for each protein is
generated with the Metropolis method8 by exchanging
pairs of amino acids in each protein, with 100,000 residue
exchange trials per residue. Energies are evaluated in the
multimeric state of a whole protein structure for each
protein domain. The temperature 1/� is always taken to be
one for the present energy scale, so that the sum of the
equilibrium distributions over all proteins for contacting
residues and tripeptide conformations are close to those
observed in their native structures; this temperature was
called a conformational temperature by Finkelstein et
al.13 Similar methods were previously used for optimizing
protein sequences for a given structure.23,24

Datasets of Protein Structures Used

Proteins each of which represent a different protein fold
were collected. Release 1.53 of the SCOP database22 was

used for the classification of protein folds. Representatives
of families or species are the first entries in the protein
lists for each family or each species in the SCOP; if these
first proteins in the lists are not appropriate (see below) to
use for the present purpose, then the second ones are
chosen. These families and species are all those belonging
to the protein classes 1 to 5; that is, classes of all �, all �,
�/�, � � �, and multidomain proteins. Classes of mem-
brane and cell surface proteins, small proteins, peptides,
and designed proteins are not used. Proteins whose struc-
tures25 were determined by NMR or with resolution worse
than 2.5 Å are removed to assure that the quality of
proteins used is high. Also, proteins whose coordinate sets
either consist of only C� atoms or include many unknown
residues or lack many atoms or residues are removed.
Proteins shorter than 50 residues are also removed. As a
result, the sets of family representatives and species
representatives include 797 proteins and 2129 proteins,
respectively. The set of family representatives is used for
analyses, where each protein is to have a completely
different protein fold.

RESULTS AND DISCUSSION

First, the statistical averages of contact energies of
proteins are calculated for an equilibrium ensemble of
sequences with two different systems: (1) interactions
consist of contact interactions only and (2) interactions
include both contact and secondary structure potentials.
These values are compared in Figure 1(A). If there were no
correlation between those two types of interactions, the
addition of secondary structure interactions would cause
no systematic deviations in the statistical averages of
contact energies of proteins. If secondary structure interac-
tions were to work against pairwise contact interactions,
the statistical averages of contact energies would increase
due to the addition of secondary structure interactions.
However, the observation is that 769 of the 797 proteins
fall below the line having unit slope, showing that mean
contact energies almost always decrease when secondary
structure interactions are added. Since those proteins are
the representatives from each protein family in the protein
fold database of SCOP-1.53,22 the decrease in the mean
contact energies by addition of secondary structure poten-
tials is a general characteristic of protein native struc-
tures. This indicates that in protein native structures the
contact interactions are consistent with the secondary
structure interactions, at least at the level of mean ener-
gies.

The effects of adding secondary structure interactions
on the variance of contact energies are presented in Figure
1(B). For 791 of the 797 proteins, the variances of contact
energies also decrease when secondary structure interac-
tions are added. The inclusion of the next neighbor interac-
tions between a tripeptide and a side chain in the second-
ary structure potential decreases even further those means
and variances of contact energies (results not shown).
Thus, in almost all protein structures, the secondary
structure interactions are consistent with the contact
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interactions, decreasing not only the means but the vari-
ances of contact energies at equilibrium.

The converse relationship, that is, the effects of contact
interactions on secondary structure energies are shown in

Figure 2; the means and variances of secondary structure
energies at statistical equilibrium over sequences gener-
ated with secondary structure interactions only are plotted
against those with both secondary structure and contact

Fig. 2. Comparisons of mean secondary structure energies per residue (A) and variances per residue (B), averaged in two ways, at statistical
equilibrium of sequences with secondary structure interactions only and at equilibrium with both secondary structure energies and contact energies
included. Shown are 797 proteins of family representatives in the SCOP-1.53 database. Similarly to the results in Figure 1, 771 averages and 792
variances of secondary structure energies are reduced when both categories of interactions are considered. The dotted line shows a line with equal
values for both axes. See Equation 14 for the definition of the notation of the statistical averages indicated on each axis.

Fig. 1. Comparisons of mean contact energies per residue (A) and variances per residue (B), averaged in two ways, at statistical equilibrium for
sequences generated with contact interactions only and at equilibrium with both the secondary structure energies and contact energies included. Shown
are 797 proteins of family representatives in the SCOP-1.53 database of which 769 averages and 791 variances of contact energies are reduced when
averaged with both classes of energies. The dotted line shows a line with equal values for both axes. See Equation 14 for the definition of the notation of
the statistical averages indicated on each axis.
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potentials. The decreases to the means and variances of
secondary structure energies by the addition of contact
interactions are likewise clearly observed; the means
decrease for 771 of the 797 proteins and the variances
decrease for 792 of the 797 proteins.

The decreases in the means of one class of interaction
energies upon adding the other class of interactions are
not small in comparison with the variances of the interac-
tion energies. As shown in Figure 3, these changes caused
by averaging using the total energy fall mostly in the
range of 0 to �1, with a weak dependence (� � nr

0.5) on
protein length, of the standard deviations of the interac-
tion energies for both classes of the energies. As a result,
these observations indicate that in protein native struc-
tures the long-range contact interactions and the short-
range secondary structure interactions are consistent with
each other at the level of mean energies and variances.

To further understand common features between the
contact and secondary structure interactions in protein
structures, covariances between contact energies and sec-
ondary structure energies have been calculated for the 797
proteins. The dependence of the statistical average of
energy on one class of interaction is represented as

�
0

1 �	�c
x�s � �c

�x dx � �� �
0

1

	��s��c
x�s � �c dx (17)

�
0

1 �	�s
�s � y�c

�y dy � �� �
0

1

	��s��c
�s � y�c dy (18)

with parameters x and y; see Equation 14 for the definition
of these statistical averages. These covariances, the inte-
grand with x � 1 or y � 1 on the right hand side, are
calculated first with the statistical equilibrium generated
with both interactions. Figure 4 shows the frequencies of
proteins whose covariances per residue fall into the vari-
ous intervals of size 0.002. The covariances per residue
scatter about zero with a small shift toward positive
values, indicating that there is virtually no correlation
between the two types of energies in the statistical en-
semble of sequences selected using both interactions; the
correlation coefficients between these interactions are
mostly between �0.1. Then, these covariances are calcu-
lated for systems with secondary structure interactions
only (y � 0) and with contact interactions only (x � 0),
shown in Figure 5. Almost all proteins show positive
covariances between these two interactions, consistent
with the results in Figures 1 and 2. The correlations
between both interactions are significant; however, it
should be noted here that the values of these covariances
are less than one fifth of the values of the variances,
	(��c)2
�c and 	(��s)2
�s shown in Figures 1(B) and 2(B);
the correlation coefficients between these interactions are
almost all positive but below 0.2.

What landscape of an energy surface in sequence space
would have such features as seen in Figures 3 and 4? One

Fig. 3. The changes of mean interaction energies caused by averag-
ing using the total energy are shown in standard deviation units of the
interaction energies for each of the short-range secondary structure and
the long-range contact interactions. Shown are 797 proteins of family
representatives in the SCOP-1.53 database. See Equation 14 for the
definition of the notation of the statistical averages indicated on each axis.
The dotted lines show lines with zero values for each axis.

Fig. 4. Frequency of proteins, for intervals of 0.002 in the covariances
per residue between secondary structure energies and contact energies
averaged with statistical ensembles of sequences generated with both
secondary structure energies and contact energies. Used here are 797
proteins of family representatives in the SCOP-1.53 database. See
Equation 14 for the notation of the statistical average indicated on the
abscissa. A dotted line marks zero covariance.
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of the characteristics of an energy surface that could lead
to these features would be for each interaction to tend to
reduce the sequence space available to the other. Sequence
spaces that are inaccessible for one of the interactions
would also exist in relatively high energy regions for the
other class of interaction, and as a result, the statistical
averages of interaction energies would decrease when the
former class of interaction was added. This is reasonable,
because the contact interactions, for example, will tend to
restrict polar residues to the surface and nonpolar resi-
dues to the interior of protein structures and thus substan-
tially reduce the sequence space accessible to polar and
nonpolar residues. If backbone conformations of interior
residues are suitable for these nonpolar residues and those
for exterior residues are also favorable for polar residues,
then the addition of contact interactions will be favorable
for secondary structure interactions and will reduce the
mean energies of secondary structure interactions as
shown in Figure 2. Conversely, the addition of secondary
structure interactions will tend to yield favorable contact
interactions and will decrease the mean energies of contact
interactions as shown in Figure 1. However, both interac-
tion classes act almost independently near the minimum
in the total energy surface, as can be seen in Figure 4.
Even far from the minimum, the correlation coefficients
between both interactions are below 0.2; see Figures 1(B),
2(B), and 4. These results are consistent with an approxi-
mation of mean force for the secondary structure poten-
tials and contact potentials, in which all other classes of
interactions are included only as a mean field9–12; in

Miyazawa and Jernigan,11 the effects of secondary struc-
ture interactions were taken into account to estimate
contact energies from those values predicted by the Bethe
approximation.

These calculations have also been repeated using a
secondary structure intra-residue potential based on data
collected for 10° intervals of (�, �) angles, and nearly
identical results were observed.

Can Native Protein Sequences Be Regarded as
Samples at Equilibrium in Sequence Space?

We have examined the consistency between the contact
and secondary structure energies of sequences at statisti-
cal equilibrium in sequence space. These analyses would
be most meaningful if the native sequences of the proteins
can be regarded as samples at equilibrium in sequence
space. We reported previously11 that the total contact
frequencies between the 20 kinds of amino acids observed
in many protein native structures can be regarded with
small relative errors (�10%) as contact frequencies at
statistical equilibrium in sequence space. Here, it is shown
that contact energies and secondary structure energies of
most native proteins lie mostly within the statistical
fluctuations around equilibrium in sequence space.

In Figure 6, the frequency distributions of the contact
energies, secondary structure energies and their sums of
native protein sequences are shown. Their energies are
given in standard deviation (SD) units away from the
mean of each interaction energy in the statistical ensemble
for each protein. The statistical ensemble and the statisti-
cal averages of the interaction energies are calculated in
each case by using both classes of interaction energies.
Although the frequency distributions for the contact ener-
gies and for the secondary structure energies are slightly
shifted from the origin in opposite directions, the fre-
quency distribution for the total energies is similar to a
Gaussian distribution; there is no clear reason that they
must obey a Gaussian distribution. For reference, a Gauss-
ian distribution is shown as a dotted line in Figure 6(B).
The native sequences and structures of proteins are both
close to the statistical equilibrium in sequence space, at
least to the extent that the energies for most native
proteins fall mostly within �2 SD of the equilibrium mean
for each protein.

In Figure 7, the contact energy and secondary structure
energy, measured in SD units from the means of each
native protein sequence are compared. There is clearly no
correlation between the deviations of secondary structure
and contact energies for each native protein from their
statistical averages; the correlation coefficient is 0.11. This
is expected from the results described in the previous
section that show both interactions to act nearly indepen-
dently near the minimum in the total energy surface,
insofar as native proteins can be regarded as samples at
equilibrium in sequence space.

In addition, these two facts, shown in Figures 6 and 7,
indicate that the conformational temperature 1/� is the
same for all proteins; otherwise, contact energies and

Fig. 5. Two kinds of statistical averages for covariances per residue
between secondary structure energies and contact energies are com-
pared, in one of which statistical ensembles of sequences are generated
with contact energies only and in the other, secondary structure energies
alone are used. The dotted lines show lines with zero values for each axis.
See Equation 14 for the meaning of the notation of the statistical averages
indicated on each axis.
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secondary structure energies of the native proteins would
exhibit greater scatter and show a positive correlation
between them. This result is consistent with the study of
Finkelstein et al.,13 who showed that the occurrence of
various structural elements in stable folds of random
copolymers is exponentially dependent on the intrinsic
energy of the element and that the same “conformational
temperature,” equal to the freezing temperature, holds for
any structural element, independently of whether it is a
small detail or a large-scale motif of overall chain folding.

CONCLUSIONS

For coarse-grained energy potentials, i.e., statistical
potentials at the residue level, it has been shown, for most
protein structures, that short-range secondary structure
interactions and long-range contact interactions are consis-
tent with each other for a statistical equilibrium with
residue exchanges in protein sequences. The statistical
averages of one class of interaction energies almost always
decrease when the other class of interactions are included.
Also, the decrease in the mean of one class of interaction
energies by including the other class of interactions is
about 0.4, on average, of the standard deviation of the
energies. The decreases in the variance of secondary
structure energies by the addition of inter-residue contact
interactions indicate that these long-range interactions
tend to reduce the available range of peptide dihedral

Fig. 6. Frequency of proteins is shown for each interval, 0.2, for native secondary structure energies as a solid line in (A) and for native contact
energies as a broken line in (A), and with their sums indicated by a solid line in (B), which are measured in standard deviation units away from their means
calculated using a statistical equilibrium of sequences generated with both interaction energies for each protein. Used here are 797 proteins of family
representatives in the SCOP-1.53 database. For reference, a Gaussian distribution is shown as a dotted curve in (B). See Equation 14 for the definition of
the notations of the statistical averages indicated on each axis.

Fig. 7. Contact energies of native protein sequences are plotted
against their secondary structure energies. Both classes of energies are
measured in standard deviation units away from their means in the
equilibrium ensemble of sequences generated using both interaction
energies for each protein. Plotted here are 797 protein family representa-
tives from the SCOP-1.53 database. See Equation 14 for the definition of
the notations of the statistical averages indicated on each axis.
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angle space. Also decreases in variance of contact energies
by the addition of secondary structure interactions indi-
cate that the short-range interactions can likewise restrict
protein native structures. However, it should be noted
here that both interactions act almost independently near
the minimum in the total energy surface, and even far
from the minimum the correlation coefficients between
them are below 0.2, supporting the mean force approxima-
tion for the secondary structure potentials and contact
potentials, at least as a first approximation; although the
decrease mean energy can be as large as the standard
deviation of the energies. This fact indicates that peptide
conformations for interior residues are more or less ad-
justed to be suitable for nonpolar residues, and inversely
those for residues on protein surfaces are adjusted for
polar residues. Thus, this consistency between short- and
long-range interactions has been shown in sequence space
and also implies that the energy landscape of short- and
long-range interactions in protein native sequences is
minimally frustrated near protein native structures in
conformational space. Such consistency and minimal frus-
tration in interactions is not found for random heteropoly-
mers, and this is an important distinctive characteristic of
proteins, which causes them to fold into single stable
structures within reasonable times. Proteins must have
achieved these unique characteristics of smoothing the
energy landscape on a coarse-grained conformational scale
over the course of molecular evolution.
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