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Abstract

We analytically derive the lower bound of the total conformational energy of a protein structure by assuming that the total confor-
mational energy is well approximated by the sum of sequence-dependent pairwise contact energies. The condition for the native structure
achieving the lower bound leads to the contact energy matrix that is a scalar multiple of the native contact matrix, i.e., the so-called G�o
potential. We also derive spectral relations between contact matrix and energy matrix, and approximations related to one-dimensional
protein structures. Implications for protein structure prediction are discussed.
� 2007 Elsevier B.V. All rights reserved.
1. Introduction

Proteins’ biological functions are made possible by their
precise three-dimensional (3D) structures, and each 3D
structure is determined by its amino acid sequence through
the laws of thermodynamics [1]. Therefore, predicting pro-
tein structures from their amino acid sequences is impor-
tant not only for inferring proteins’ biological functions,
but also for understanding how 3D structures are encoded
in such one-dimensional information as amino acid
sequence. The problem of protein structure prediction is
naturally cast as an optimization problem where a poten-
tial function is minimized. Given an appropriate potential
function, conformational optimization should yield the
native structure as the unique global minimum conforma-
tion of the potential function. Thus, the problem has been
traditionally divided into two sub-problems: one is to
establish an appropriate potential function [2], and the
other is to develop the methods to efficiently search the vast
conformational space of a protein [3]. Among various
forms of effective energy functions, statistical contact
potentials [4,5] have been widely used. In this Letter, we
exclusively treat a class of such contact potentials, neglect-
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ing other contributions such as electrostatics and local
interactions. Accordingly, a protein conformation is repre-
sented as a contact matrix in which the ði; jÞ element is 1 if
the residues i and j are in contact in space, otherwise it is 0.
Although the contact matrix is a coarse-grained representa-
tion of protein conformation, it has been known that the
contact matrix contains sufficient information to recover
the three-dimensional (native) structure of proteins [6]. It
is noted that, for the lattice model of proteins [7], these rep-
resentations of protein conformation and energy function
are exact.

2. Theory

2.1. Lower bound of contact energy

Our fundamental assumption is that the conformational
energy of a protein can be somehow expressed in terms of a
contact matrix. Now let us assume that the total energy of
a protein can be well approximated by the sum of pairwise
contact energies between amino acid residues, and that
each pairwise contact energy can be decomposed into a
sequence-dependent term and a conformation-dependent
term. The sequence-dependent term is expressed as a
matrix EðSÞ ¼ ðEijÞ which we call the contact energy
matrix, or E-matrix for short. Each element Eij of the
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E-matrix represents the energy between the residues i and j

when they are in contact. This form of the E-matrix is a
very general one: Each element, Eij, may depend on the
entire sequence, S, or it may depend only on the types of
the interacting amino acid residues, i and j, as in the con-
ventional contact potentials. The conformation-dependent
term is expressed as another matrix DðCÞ ¼ ðDijÞ which
we call the contact matrix, or C-matrix. Each element Dij

of the C-matrix assumes a value of either 1 or 0, depending
on the residues i and j are in contact or not, respectively.
Hence the total energy EðC; SÞ of a protein of sequence S

of N residues and having conformation C is given by

EðC; SÞ ¼ 1

2

XN

i¼1

XN

j¼1

EijðSÞDijðCÞ ð1Þ

¼ 1

2
EðSÞ;DðCÞ½ � ð2Þ

where ½�; �� denotes the Frobenius inner product between
two matrices [8,9]. Based on this assumption, we derive
the lower bound for the conformational energy and the
conditions for the native structure and E-matrix to achieve
the bound.

The Frobenius inner product leads to the matrix l2 norm
defined as, for a matrix M, kMk � ½M ;M �1=2 ¼ ð

P
i;jM

2
ijÞ

1=2.
In the case of C-matrix, since Dij ¼ 0 or 1, we have

kDðCÞk2 ¼ 2N cðCÞ ð3Þ

where N c � ð1=2Þ
P

i;jDij is the total number of contacts. As
for any inner products, the Frobenius inner product satis-
fies the Cauchy–Schwarz inequality (j½A;B�j 6 kAkkBk)
from which we have

½E;D�P �kEkkDk ð4Þ
where the equality holds if and only if

E ¼ eD ð5Þ
for some scalar e < 0. Although the inequality (Eq. (4))
holds for any pair of matrices, we now regard it as the low-
er bound for conformational energy for a given E-matrix.
For simplicity, we first consider the energy minimization
problem for conformations with kDðCÞk fixed to the value
of the native conformation. It is desirable for the native
conformation to satisfy the lower bound and hence its con-
dition Eq. (5). If the native conformation indeed satisfies
the condition Eq. (5), then the elements of the E-matrix
is either 0 or e so that only the contacts present in the native
conformation are stabilizing. Thus, the native conforma-
tion satisfying Eq. (5) is actually a GMEC among any con-
formations with arbitrary values of kDðCÞk. An E-matrix
that satisfies Eq. (5) for the native C-matrix is a kind of
the so-called G�o potential [10,11] which has been essential
for studying the protein folding problem. At this point, it is
still possible that the native structure is not the unique
GMEC. For example, if a conformation contains all the
native contacts together with some other contacts, this con-
formation has the same energy as the native conformation.
In order for a native conformation to be the unique
GMEC, it is required that the total number of contacts
of the native conformation is larger than that of any other
conformations that contain all the native contacts. From
the relation Eq. (3), maximizing the total number of con-
tacts is equivalent to maximizing the norm of the C-matrix,
which in turn implies the minimization of the right-hand
side of Eq. (4). To summarize, for a given E-matrix,
EðSÞ, of a protein, its native conformation, Cn, achieves
the lower bound in Eq. (4) if and only if EðSÞ ¼ eDðCnÞ
for some e < 0, and such native structure is the unique
GMEC if and only if kDðCnÞk is the maximum of all pos-
sible conformations that contain all the native contacts.
Note that the former condition is a relation between E-ma-
trix and C-matrix whereas the latter is a condition for a na-
tive structure to satisfy. The magnitude of e is not specified
here, but it should be determined by other factors such as
the folding temperature. It should be noted that a native
structure can be the unique GMEC without achieving the
lower bound of Eq. (4). Such a case is made possible either
by the limitation of the conformational space imposed by
other steric factors such as chain connectivity or excluded
volumes, or by inherent inconsistencies of the E-matrix
so that no plausible conformations are allowed to satisfy
the lower bounds.

2.2. Spectral relations

To examine more closely how the lower bound can
be achieved, we next derive a more generous lower bound
in a more restricted case. First, the C-matrix is decomposed
as

D ¼
XN

a¼1

rauavT
a ð6Þ

where ra is the ath singular value and ua and va are the cor-
responding left and right singular vectors, respectively.
U ¼ ðu1; . . . ; uN Þ and V ¼ ðv1; . . . ; vN Þ are orthogonal
matrices. The singular components are sorted in decreasing
order of the singular values: r1 P � � �P rN ðP 0Þ. Since D
is real symmetric, the singular values are the absolute val-
ues of the eigenvalues of D, and the singular vectors are
such that ua ¼ �va, where the sign corresponds to that of
the respective eigenvalue. Next, the E-matrix is decom-
posed in the same manner as

E ¼
XN

a¼1

saxayT
a ð7Þ

where sa are singular values, and xa and ya are left and right
singular vectors, respectively. Since E is also real symmet-
ric, the singular components have the same properties as
the C-matrix D. Noting that ½E;D� ¼ trðEDTÞ, von Neu-
mann’s trace theorem [9] leads to the following inequality:

½E;D�P �
XN

a¼1

rasa ð8Þ
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where the equality holds if and only if

ðuT
a xbÞðvT

a ybÞ ¼ �da;b ð9Þ

for all a and b with non-zero singular values ra and sb (da;b

is Kronecker’s delta). We now regard this inequality as a
lower bound for the conformational energy for a given
E-matrix. For a fixed set of the singular values ra

(a ¼ 1; . . . ;N ), if and only if there exists such a conforma-
tion that satisfies the condition in Eq. (9), then that confor-
mation is the lowest possible energy conformation. Let ka

and ea (a ¼ 1; . . . ;N ) be the eigenvalues of the C-matrix
and E-matrix, respectively, sorted in the decreasing order
of their absolute values. Then ra ¼ jkaj and sa ¼ jeaj for
a ¼ 1; . . . ;N , and ua and xa are the eigenvectors of the cor-
responding matrices. Thus, in terms of eigenvalues and
eigenvectors, the lower bound in Eq. (8) is equal toP

akaea with kaea 6 0 for a ¼ 1; . . . ;N . In addition to the
condition Eq. (9) for the lower bound of Eq. (8), if D and
E are of the same rank, then the numbers of positive, neg-
ative, and zero eigenvalues of D and �E are the same and
ua ¼ �xa. Thus, from Sylvester’s law of inertia [8], there ex-
ists a real non-singular matrix S such that

E ¼ �SDST; ð10Þ
i.e., the E-matrix is *congruent to the C-matrix. If the con-
formation that satisfy the condition Eq. (10) is the native
structure, the E-matrix is consistent in the sense that the
contributions from all the eigencomponents are stabilizing
the native structure (kaea 6 0). Since the matrix S is non-
singular, we can ‘predict’ the native structure from the E

matrix as D ¼ �S�1ES�T (if we can construct the appropri-
ate matrix S). At this point, however, the native structure
may not be the GMEC since other conformations with a
different set of singular values may have lower energies.

In order to compare the energies of conformations with
different sets of singular values, we use another inequality
[9]

�
XN

a¼1

rasa P �kEkkDk ð11Þ

where the lower bound is the same as that in Eq. (4). We
note that, in terms of singular values, the matrix norms
are expressed as kDk ¼ ð

P
ar

2
aÞ

1=2 and kEk ¼ ð
P

as
2
aÞ

1=2.
Hence, it is clear that the equality in Eq. (11) holds if
and only if, in addition to the condition in Eq. (9), there ex-
ists a scalar constant c such that sa ¼ cra for all
a ¼ 1; . . . ;N . These conditions are equivalent to Eq. (5).

2.3. One-dimensional approximations

To connect the present results with previous studies, we
next introduce two approximations. First, we consider the
case where the E-matrix is well approximated by its princi-
pal eigencomponent, that is, E � e1x1xT

1 . This approxima-
tion is motivated by the eigenvalue analysis of the
Miyazawa–Jernigan (MJ) contact potential [4] performed
by Li et al. [12], and has been employed by others [13–
15]. In this case, the lower bound Eq. (8) is achieved if
and only if x1 ¼ �u1 and e1k1 < 0. This result was previ-
ously derived by Cao et al. [13] who subsequently showed
that the vector x1 constructed by using the components
of the principal eigenvector of the MJ contact potential is
indeed highly correlated with the principal eigenvector of
the native contact matrices [14]. Bastolla et al. [15] obtained
a similar result, but they also showed that taking the aver-
age of such x1 over evolutionarily related proteins greatly
improved the correlation. Since the rank of the contact
matrix is in general not 1, Eq. (10) does not hold and the
equality in Eq. (4) cannot be satisfied. Consequently, there
are attractive interactions between non-native contacts
even when x1 ¼ u1 holds exactly. Nevertheless, Porto
et al. [16] have demonstrated that the knowledge of u1

alone is practically sufficient for reconstructing the native
contact matrix of small single-domain proteins. Therefore,
construction of effective rank-1 E-matrices is of great inter-
est [17]. Based on the Porto et al.’s result, it is tempting to
postulate that the satisfaction of the lower bound by a
rank-1 E-matrix is sufficient for the native conformation
to be the unique GMEC. At present, however, there is no
clear connection between the present formulation (energy
minimization) and the Porto et al.’s combinatorial
algorithm.

Another approximation is a kind of mean-field approx-
imations in which the matrix element Eij is replaced by its
average over column hEi�i �

PN
j¼1Eij=N . Let us define

e ¼ ðhE1�i; . . . ; hEN �iÞT and n ¼ ðn1; . . . ; nN ÞT where
ni �

PN
j¼1Dij is the contact number of the ith residue. Then,

we have the following approximation and the lower bound:

EðC; SÞ � 1

2
eTn ð12Þ

P � 1

2
kekknk ð13Þ

where the equality in (13) holds if and only if the column-
averaged E-matrix is anti-parallel to the contact number
vector, that is, e ¼ en for some e < 0. This lower bound
condition is analogous to Eq. (5), and can be regarded as
another kind of the G�o potential for one-dimensional pro-
tein structure. It has been suggested that contact number
vector can significantly constrain the conformational space
[18]. Together with other one-dimensional structures, con-
tact number vector is also used for recovering the native
structures [19], and can be accurately predicted [20–24]. It
has been pointed out that the contact number vector is
highly correlated with the principal eigenvector of the
C-matrix [16,19], which suggests that this mean-field
approximation is qualitatively similar to the principal
eigenvector approximation introduced above.

3. Discussion

Using a more restricted, but conventional, form of the
E-matrix where each element Eij depends only on the types
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of ith and jth residues (e.g., the MJ potential), Vendruscolo
et al. [25,26] have shown that it is impossible for such E-
matrices to stabilize all the native structures in a database.
The conventional E-matrices such as those they studied do
not take into account the sequence-dependence beyond a
summation of the contributions from residue pairs. In the
present study, we assumed a more general form for the
E-matrix, allowing each element Eij to depend on the whole
amino acid sequence. In practical situations of protein
structure prediction, we want to optimize an energy func-
tion so that the native conformations of arbitrary proteins
achieve the lower bound. Now let us impose this as a req-
uisite for the E-matrix. Then, there should exist a function,
namely E, that maps each amino acid sequence to the cor-
responding optimal E-matrix, that is, the G�o potential.
Thus, the problem of structure prediction becomes a trivial
matter. Currently, most efforts for developing energy func-
tions seem to be focused on accurate estimation of a fixed
set of parameters for a given functional form [2]. The pres-
ent analysis suggests that inferring the function E that can
generate the G�o-like E-matrices from amino acid sequences
is essential if a contact potential is used. The lower bound
inequality (Eq. (4)) and its condition for the equality (Eq.
(5)) will serve as the guiding principle for inferring such a
function. This approach to structure prediction is appar-
ently similar to machine-learning approaches to contact
matrix prediction [17,27]. Although conventional
machine-learning methods are not directly targeted at the
optimization of the form of Eq. (4), their prediction accu-
racy should be indicative of the possibility for identifying
the function E.

In the preceding paragraph, we have assumed the exis-
tence of the function E to construct the optimal contact
potential from a given amino acid sequence. What if, how-
ever, there is no such function? In fact, the limited success
of current contact matrix prediction [28] strongly suggests
that this is more likely the case. Such a case implies either
that there are proteins for which the lower bound energy
cannot be achieved, or that the total energy cannot be suf-
ficiently accurately approximated by Eq. (1). The former
case indicates that some proteins are inherently frustrated,
but to a good approximation such proteins should be
rather exceptional for natural proteins [10,11]. The latter
case may indicate that multi-body contact interactions
[29] and/or other energy components than contact energies
are more important.

In summary, we have shown that the requirement for
the native structure to achieve the lower bound naturally
leads to the G�o potential and the requirement for such a
conformation to be the unique GMEC leads to the
native conformation being the most compact one among
those containing all the native contacts. These results
suggest that protein structure prediction should be possi-
ble simply by constructing the optimal energy matrices or
that the contact potential alone is not suitable for the
problem. Although not yet definitive, the current state
of contact prediction [28] as well as recent studies on
local interactions [30,31] suggest that the latter may be
the case. Nevertheless, the present results may be useful
for evaluating the optimality of potential functions in
either case.
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[7] H. Taketomi, Y. Ueda, N. Gō, Int. J. Pept. Prot. Res. 7 (1975) 445.
[8] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University

Press, Cambridge, UK, 1985.
[9] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge

University Press, Cambridge, UK, 1991.
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