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The properties of contact matrices �C matrices� needed for native proteins to be the lowest-energy confor-
mations are considered in relation to a contact energy matrix �E matrix�. The total conformational energy is
assumed to consist of pairwise interaction energies between atoms or residues, each of which is expressed as
a product of a conformation-dependent function �an element of the C matrix� and a sequence-dependent energy
parameter �an element of the E matrix�. Such pairwise interactions in proteins force native C matrices to be in
a relationship as if the interactions are a Go-like potential �N. Go, Annu. Rev. Biophys. Bioeng. 12, 183
�1983�� for the native C matrix, because the lowest bound of the total energy function is equal to the total
energy of the native conformation interacting in a Go-like pairwise potential. This relationship between C and
E matrices corresponds to �a� a parallel relationship between the eigenvectors of the C and E matrices and a
linear relationship between their eigenvalues and �b� a parallel relationship between a contact number vector
and the principal eigenvectors of the C and E matrices, where the E matrix is expanded in a series of
eigenspaces with an additional constant term. The additional constant term in the spectral expansion of the E
matrix is indicated by the lowest bound of the total energy function to correspond to a threshold of contact
energy that approximately separates native contacts from non-native ones. Inner products between the principal
eigenvector of the C matrix, that of the E matrix, and a contact number vector have been examined for 182
proteins, each of which is a representative from each family of the SCOP database �Murzin et al., J. Mol. Biol.
247, 536 �1995��, and the results indicate the parallel tendencies between those vectors. A statistical contact
potential �S. Miyazawa and R. L. Jernigan, Proteins 34, 49 �1999�; 50, 35 �2003�� estimated from protein
crystal structures was used to evaluate pairwise residue-residue interactions in the proteins. In addition, the
spectral representation of C and E matrices reveals that pairwise residue-residue interactions, which depend
only on the types of interacting amino acids, but not on other residues in a protein, are insufficient and other
interactions including residue connectivities and steric hindrance are needed to make native structures unique
lowest-energy conformations.
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I. INTRODUCTION

Predicting a protein three-dimensional structure from its
sequence is equivalent to reproducing a three-dimensional
structure from one-dimensional information encoded in its
sequence. From such a viewpoint, there are many studies that
try to reconstruct three-dimensional structures from one-
dimensional information such as contact numbers and the
principal eigenvector of a contact matrix �1–4�. An important
question is not only what kind of one-dimensional informa-
tion is needed to reconstruct protein structures, but also why
such information is critical to reconstruct protein structures.

Let us think about a distance matrix each element of
which is equal to distance between atoms or residues speci-
fied by its column and row. Information contained in the
distance matrix is equivalent with the specification of three-
dimensional coordinates of each atom or residue, except that
a mirror image of the native structure cannot be excluded in
distance information. Reconstructing a distance matrix from
one-dimensional vectors requires in principle the specifica-

tion of all eigenvectors as well as eigenvalues. In other
words, for an N�N matrix, N N-dimensional vectors are
required. However, protein’s particular characteristics may
allow the reconstruction of a distance matrix with fewer one-
dimensional vectors.

A contact matrix whose element is equal to 1 for contact-
ing atom or residue pairs or 0 for no-contacting atom or
residue pairs, on the basis of distance between the two atoms
or residues, is a simplification of a distance matrix with two
categories, contact or noncontact, but keeps almost all infor-
mation needed to reconstruct three-dimensional structures of
proteins. In the case of a residue-residue contact matrix con-
sisting of discrete values, 1 and 0, Porto et al. �2� showed
that the contact map of the native structure of globular pro-
teins can be reconstructed starting from the sole knowledge
of the contact map’s principal eigenvector and the recon-
structed contact map allow in turn for an accurate reconstruc-
tion of the three-dimensional structure.

A vector of contact numbers, which is defined as the num-
ber of atoms or residues in contact with each atom or residue
in a protein, is another type of one-dimensional vector that is
often used as a one-dimensional representation of protein
structures �5–7� and may be similar to but not the same as
the principal eigenvector of a contact matrix. Kabakçioğlu et
al. �1� suggested that the number of feasible protein confor-
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mations that satisfy the constraint of a contact number for
each residue is very limited.

A question is why the principal eigenvector of a contact
matrix and a contact number vector contain significant infor-
mation on protein structures. Here, we consider what prop-
erties of contact matrices are induced by pairwise contact
interactions for native proteins to be the lowest-energy con-
formations. For simplicity, a total conformational energy is
assumed to consist of pairwise interactions over all atom or
residue pairs. It is further assumed that the pairwise interac-
tion can be expressed as a product of a conformation-
dependent �C-dependent� factor and a sequence-dependent
�S-dependent� factor. The C-dependent factor represents the
degree of contact between atoms or residues and can be as-
sumed without loss of generality to take any value between 0
and 1. The S-dependent factor corresponds to an energy pa-
rameter specific to a given pair of atoms or residues. Here we
call a matrix of the C-dependent factor a generalized contact
matrix or even simply a contact matrix �C matrix� and call a
matrix of the S-dependent factor a generalized contact en-
ergy matrix or even simply a contact energy matrix �E ma-
trix�. A simple linear algebra indicates that such a total en-
ergy function is bounded by the lowest value corresponding
to the total energy for a C matrix in which all pairs with
lower contact energies than a certain threshold are in contact.
Such a lower bound is achieved �8� if and only if proteins are
ideal to have the so-called Go-like potential �9�. The Go-like
potential is defined as the one in which interaction energies
between native contacts are always lower than those between
non-native contacts. Real pairwise interactions in proteins
could not be the Go-like potential. In other words, real pro-
teins could not achieve this lowest bound of a pairwise po-
tential because of atom and residue connectivities and steric
hindrance that are not included in this type of total energy
function. How should they approach to the lowest bound as
closely as possible? The lowest bound can be approached by
making the singular vectors of the C matrix parallel to the
corresponding singular vectors of the E matrix with the same
value of the singular values. Also, in the lowest bound a
contact number vector tends to be parallel to the principal
eigenvectors of the C and E matrices. The most effective
way would be to first make the principal singular vector of
the C matrix parallel to that of the E matrix. A similar strat-
egy was used to recognize protein structures by three-
dimensional threading of protein sequences �10,11�. Bastolla
et al. �12� pointed out that the principal eigenvector of a
contact matrix must be correlated with that of a contact en-
ergy matrix if the free energy of a conformation folded into a
contact map is approximated by a pairwise contact potential.
It was shown that the correlation coefficients of these two
principal eigenvectors are actually statistically significant in
protein folds. However, unlike their analyses the lowest
bound of the total energy indicates the E matrix to be
singular-decomposed with a constant term that corresponds
to the threshold energy to separate native contacts from non-
native ones. The eigenvectors of E matrix depend on the
value of the additional constant.

Based on the indication above, we have analyzed the re-
lationships between the principal eigenvectors of the C and E
matrices and contact number vector by examining the inner

product of the two vectors. A statistical contact potential
�13,14� estimated from protein crystal structures is used to
evaluate pairwise residue-residue interactions in proteins.
One hundred and eighty-two representatives of single-
domain proteins from each family in the SCOP version 1.69
database �15� are used to analyze the relationship between
the principal eigenvectors of the native C and E matrices and
contact number vector. Results show that the inner product
of both principal eigenvectors has a maximum at a certain
value of the threshold energy for contacts and that there are
parallel tendencies between both the principal eigenvectors
and contact number vector. It is worth noting that the prin-
cipal eigenvector of the native C matrix corresponds to the
lower-frequency normal modes of the native structure of pro-
tein.

In addition, the spectral representation of C and E matri-
ces reveals that pairwise residue-residue interactions, which
depend only on the types of interacting amino acids, but not
on other residues in a protein, are insufficient and other in-
teractions including residue connectivities and steric hin-
drance are needed to make native structures unique lowest-
energy conformations.

II. METHODS

A. Basic assumptions and conventions

We first assume that the total conformational energy of a
protein with conformation C and amino acid sequence S of N
units can be approximated as the sum of pairwise interaction
energies between the units. Here a single unit may consist of
an atom or a residue, although in most cases we treat a resi-
due as a unit. We further assume that each pairwise interac-
tion term can be expressed as a product of a C-dependent
factor and an S-dependent factor. The C-dependent factor
represents the degree to which a pair of units are in contact,
while the S-dependent factor represents an interaction energy
for a contacting pair of units. In other words, the total con-
formational energy is assumed to be approximated as

Ec�C,S� =
1

2�
i

N

�
j

N

Eij�S��ij�C� �1�

=
1

2�
i

N

�
j

N

�Eij�S��ij�C� + �0Nc�C� , �2�

�Eij�S� � Eij�S� − �0. �3�

where Eij�S� and �ij�C� are the S-dependent and
C-dependent factors for the pairwise interaction energy be-
tween the ith and jth units, respectively. Nc�C� is the total
number of contacts between units and defined as

Nc�C� �
1

2�
i

�
j

�ij�C� =
1

2�
i

ni�C� , �4�

where the generalized contact number ni, which is the total
number of units contacting with the ith unit, is defined as
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ni�C� = �
j

N

�ij�C� . �5�

In Eq. �2�, a constant �0 defined by Eq. �3� is introduced to
explicitly treat the total number of contacts in the evaluation
of the total energy.

Each �ij�C� is a function of coordinates of the ith and jth
units, and is assumed without loss of generality to take any
value between 0 and 1, with the diagonal elements always
defined to be equal to 0. The S-dependent term Eij�S� can
include not only two-body interactions, but multibody effects
such as a mean-field; that is, it cannot only depend on the
type of a unit pair, but on the entire protein sequence. We call
the matrix ��C����ij�C�� as a generalized contact matrix or
C matrix for short. Similarly, we call the matrix Eij�S� as a
generalized contact energy matrix or E matrix for short. Each
element of the energy function of Eq. �1� can represent either
attractive or repulsive interactions, but not both. In the next
sections, we consider the mathematical lower limits of the
total contact energy, ignoring atomic details of proteins such
as atom and residue connectivities and steric hindrance. The
volume exclusions between atoms are assumed to be satis-
fied and are not included in the total energy function. To
minimally reflect the effects of steric hindrance, the total
number of contacts, Nc, is explicitly treated in the evaluation
of the total energy, Eq. �2�, by introducing a constant �0. The
expression for Eq. �1� can be regarded as a special case of
Eq. �2� in which �0 is equal to zero.

B. Lower bounds of the total contact energy

Let us consider the lower bounds of the total contact en-
ergy represented by Eq. �1� under a condition that each ele-
ment of C matrix can independently take any value within
0��ij �1 irrespective of whether or not they can be reached
in real protein conformations; in other words, atom and resi-
due connectivities and steric hindrance are completely ig-
nored.

If one regards �Eij and �ij as the elements of the vectors

�E��S� and �� �C� in N2-dimensional Euclidean space, it will
be obvious that the first term of Eq. �2� can be bounded by a
product of the norms of those two vectors:

Ec�C,S� � −
1

2
��E��S�� ��� �C�� + �0Nc�C� , �6�

where �¯ � means a Euclidian norm. Obviously the equality
of Eq. �6� is achieved if and only if those vectors are anti-
parallel to each other:

�Eij�S� = ��ij�C� , �7�

where � is a negative constant.
In addition, there is a simple mathematical limit for the

total energy of Eq. �1� for which the C matrix is equal to
H0�−�Eij�:

Ec�C,S� �
1

2�
i

�
j

�Eij�S��ij�Cmin� + �0Nc�Cmin� �8�

�
1

2�
i

�
j

Eij�S�H0„− Eij�S�… , �9�

�ij�Cmin� = H0„− �Eij�S�… , �10�

where H0�x� is the Heaviside step function that takes 1 for
x�0 and 0 for otherwise. Cmin is the lowest-energy confor-
mation with a constraint on the total contact number Nc,
although it is not necessarily reached due to atom and resi-
due connectivities and steric hindrance. If each �ij is allowed
to take either 0 or 1 only, and also each ��ij takes either one
of two real values only to be able to satisfy Eq. �7�, both the
lower bounds of Eqs. �6� and �8� are equal to each other.
Otherwise, the lower bound of Eq. �6� is further bounded by
the lower bound of Eq. �8�, or the equality in Eq. �6� cannot
be achieved with 0��ij �1, but Eq. �8� is always satisfied.
If the total number of contacts Nc is constrained to be equal
to Nc�Cmin�, then �0 must be properly chosen as a nonposi-
tive value so that Eq. �4� is satisfied with C=Cmin. Other-
wise, �0 should be taken to be equal to 0 to obtain the lower
bound of Eq. �9�. Equation �9� describes the lowest bound
without any constraint on the number of contacts and corre-
sponds to the energy of the conformation Cmin for the case of
�0=0.

The potentials that satisfy Eq. �7� or �10� are just Go-like
potentials �9�, in which interactions between native contact
pairs are always more attractive than those between non-
native pairs. Let us call proteins with a Go-like potential as
ideal proteins. There are multiple levels of nativelikeliness in
the Go-like potential. The most nativelike potential of the
present Go-like potentials is the one in which all interactions
between native contacts are attractive and other interactions
are all repulsive. In other words, Eij is negative for native
contacts and positive for non-native contacts. In such a Go-
like potential, the native conformation can attain the lowest
bound of Eq. �9�, which is equivalent to Eq. �8� with �0=0. A
less nativelike potential is the one in which interactions be-
tween non-native contact pairs can be attractive, but always
less attractive than those between native contact pairs. An
ideal protein with such a potential can attain Eq. �8� with a
proper value of �0, which is the threshold energy for native
and non-native contacts. For real protein, we should define
�0 as a threshold of contact energy under which unit pairs
tend to be in contact in native conformations.

In ideal proteins, the lowest-energy conformation must be
the one for which the contact potential looks like a Go-like
potential, and inversely the potential must be a Go-like po-
tential for the lowest-energy conformation. In real proteins, it
would be impossible that contact potentials for native struc-
tures are exactly like a Go-like potential of Eq. �7� or �10�,
even though the contact potential being considered here may
be the effective one that includes not only actual pairwise
interactions, but also the effects of higher-order interactions
near native structures. In other words, the lowest bound of
Eq. �8� could not be achieved for real pairwise potentials,
because of atom and residue connectivities and steric hin-
drance. However, it is desirable to reduce frustrations among
interactions so that an effective pairwise potential in native
structures must approach the Go-like potential. Then, a ques-
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tion is how native contact energies approach the mathemati-
cal lowest limit. In the following, we will give tips as to how
the C matrix should be designed to decrease the total energy
toward the theoretical lowest limit.

It should be noted here that the lowest-energy conforma-
tion, the C matrix, is considered for a given potential, the E
matrix, but not its inverse problem, which is to consider an
optimum potential or an optimum sequence for a given
conformation—that is, an optimum E matrix for a given C
matrix. In the inverse problem, the total partition function
varies depending on each sequence and it must be taken into
account to evaluate the stability of the given C matrix in
relative to the other conformations �16–19�. The Z score of
the energy gap between the given C matrix and other com-
pact conformations may be used to evaluate the optimality of
each sequence �12,20�.

C. Spectral relationship between C and E matrices

We apply singular value decomposition to both the C ma-
trix �generalized contact matrix� and E matrix �generalized
contact energy matrix�. The C matrix is decomposed as

�ij�C� = �
	

�
	�C��Li	�C�Rj	�C� , �11�

�
1�C�� � ¯ � �
N�C�� � 0, �12�

where 
	�C� is the eigenvalue of ��C� and its absolute value
�
	�C�� is the 	th non-negative singular value of ��C� ar-
ranged in decreasing order, and L	�C�� t�L1	 , . . . ,LN	� and
R	�C�� t�R1	 , . . . ,RN	� are the corresponding left and right
singular vectors; both L��L1 , . . . ,LN� and R
��R1 , . . . ,RN� are orthonormal matrices. Note that the sin-
gular values for a symmetric matrix such as a contact matrix
are equal to the absolute value of its eigenvalue. We choose
the eigenvector corresponding to the eigenvalue 
	�C� as a
right singular vector R	�C�, and if 
	�C��0, L	�C�
�R	�C� and otherwise L	�C��−R	�C�.

Likewise, the E matrix Eij�S� is decomposed as

Eij�S� = �
�

����Ui��S�Vj��S� + �0, �13�

��1� � ¯ � ��N� � 0, �14�

where the absolute value of the eigenvalue, ����S��, U��S�
� t�U1� , . . . ,UN��, and V��S�� t�V1� , . . . ,VN�� are the �th
singular value, left singular vector, and right singular vector
of the matrix �Eij�S�, respectively. We choose the eigenvec-
tor corresponding to the eigenvalue ���C� as a right singular
vector V��C� and if ���C��0, U��C��V��C� and otherwise
U��C��−V��C�.

We then substitute Eqs. �11� and �13� into the definition of
the total energy, Eq. �1�, and obtain

Ec�C,S� =
1

2�
	

�
�

�
	�C������S���	��C,S� + �0Nc�C� ,

�15�

where

�	��C,S� � �
i

Li	�C�Ui��S��
j

Rj	�C�Vj��S�

=tL	�C�U��S�tR	�C�V��S� . �16�

Because the first term in Eq. �15� is simply the trace of the
product of two matrices, tr��Et��, Neumann’s trace theorem
�21� leads to the following inequality:

Ec�C,S� � −
1

2 �
	��
��0


�
�C���S�� + �0Nc�C� . �17�

The equality in Eq. �17� is achieved if and only if

�	� = − �	� for 	�	�
	�	 � 0
; �18�

that is, all the corresponding left and right singular vectors of
the C and E matrices are exactly parallel or antiparallel to
each other. Then, regarding the singular values as the

elements of a vector—i.e., 
� �C�� t�
1 , . . . ,
N� and ���S�
� t��1 , . . . ,�N�—the sum of the products of the eigenvalues
of the E and C matrices in Eq. �17� can be bounded by the
product of the norms of those two vectors, which is equal to
the product of the norms of the vectors consisting of E- or
C-matrix elements. As a result, we obtain the lower bound
corresponding to Eq. �6� already derived in the previous sec-
tion:

Ec�C,S� � −
1

2
�
� �C��	��
��0
����S��	��
��0
 + �0Nc�C� �19�

=−
1

2
��E��S��	��
��0
��� �C��	��
��0
 + �0Nc�C� ,

�20�

where �¯ �	��
��0
 means the norm in the subspace of

��0. The equality of Eq. �19� is achieved if and only if
the values of the eigenvalues of the C matrix are proportional
to those of the E matrix:

��S� = �
�C� for 	��
� � 0
 . �21�

Note that � is a negative constant due to Eq. �18�. This con-
dition with Eq. �18� corresponds to Eq. �7�, but the spectral
representation of C and E matrices reveals that the relation of
Eq. �21� is required only for the eigenspaces of 
��0.

D. Is a pairwise residue-residue potential sufficient
to make native structures unique

lowest-energy conformations?

If there exists  such that �=0 and the C matrices for two
conformations C and C� satisfy 	tU���C�−��C���V
=0 for
	����0
 and Nc�C�=Nc�C��, those two conformations have
the same conformational energy, because the total contact
energy can be represented as

Ec�C,S� = �
�

�����tU��C�V��� + �0Nc�C� . �22�

If the contact interactions are genuine two-body between
residues, Eij�S� and �Eij�S� will depend only on the residue
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type of the ith and jth units and therefore rank��Eij� will be
less than or equal to the number of amino acid types in a
protein; therefore, rank��Eij��20. Thus, in the case of genu-
ine two-body interactions between residues, there must exist
 such that �=0 for any chain longer than 20 residues—that
is, multiple C matrices with the same energy. In other words,
interactions other than pairwise interactions are needed to
make native structures unique lowest-energy conformations.
A certain success �22� of genuine two-body statistical poten-
tials in identifying native structures as the unique lowest-
energy conformations indicates that most of the eigenspaces
of �=0, especially in orientation-dependent potentials, may
be significantly reduced or even disallowed for short proteins
by atom and residue connectivities and steric hindrance. It
may be worthy of note that the number of possible C matri-
ces is of the order of 2N�N−1�/2, but the conformational en-
tropy of self-avoiding chains is proportional to at most N,
where N is the chain length; that is, vast conformational
space becomes disallowed by chain connectivity and steric
hindrance. However, it would be not surprising even if a
two-body contact potential is insufficient to make all the na-
tive structures be unique lowest-energy conformations, espe-
cially for long amino acid sequences. Actually it was re-
ported �23–25� that it is impossible to optimize a pairwise
potential to identify all native structures. Multibody interac-
tions �26� may be required as a mean-field or even explicitly
together with the two-body interactions, as well as other in-
teractions such as secondary structure potentials �27,28�.

E. Relationship between a contact number vector n
and eigenvectors of the C matrix

Equation �17� indicates that the larger the principal eigen-
value is, the lower is the lower bound of the total contact
energy. The eigenvalue 
	 satisfies


	�C� =
tR	�C�n�C�

tR	�C�1
�23�

=�n•
2�1/2tR	n�1�/�tR	1�n�� , �24�

where tR	n / �n� is the cosine of the angle between the con-
tact number vector n and eigenvector R	, and tR	1 / �1� is
the one between the eigenvector R	 and the vector 1 whose
elements are all equal to 1. Here �n•

2� represents the second
moment of contact numbers over all units. We can say that
the eigenvalue 
	 is equal to the weighted average of contact
number ni with each component of the eigenvector, Ri	, and
also that it is roughly proportional to the square root of the
second moment of contact numbers. The principal eigen-
value has a value within the range of 2Nc /N�
1�maxi ni
�29�. The larger the ratio tR	n�1� / �tR	1�n�� is, the larger the
eigenvalue 
	 becomes. It has been reported that the contact
number vector is highly correlated with the principal eigen-
vector of the C matrix �2,3�.

F. Relationship between a contact number vector n
and eigenvectors of the E matrix

A contact number vector is a C matrix summed over a
row or column. Thus, to obtain a relationship between the

contact number vector n and eigenvectors of the E matrix, an
averaging of the E matrix over a row or column is needed.

We approximate the total contact energy as follows by
replacing �Eij by its average over the index j, �Ei•, and then
obtain an approximate expression for the lower bound of the
total contact energy:

Ec�C,S� 
1

2�
i

�
j
� 1

N
�

k

�Eik�S���ij�C� + �0Nc�C�

�25�

=
1

2
t�E� •�S�n�C� + �0Nc�C� �26�

�−
1

2
��E� •�S���n�C�� + �0Nc�C� , �27�

where the mean contact energy vector �E� • is defined as

�E� •�S�� t(. . . , 1
N�k�Eik�S� , . . . ). The equality in Eq. �27� holds

if and only if the two vectors �E� • and n are antiparallel:

�E� •�S�

��E� •�S��
= −

n�C�
�n�C��

. �28�

Equation �28� above is equivalent to the following relation
between the contact number vector and the eigenvector of
the E matrix:

tV�n�1�
tV�1�n�

=
− ��

��
�

���
tV�1/�1��2�1/2 . �29�

If the E matrix can be well approximated by the principal
eigenvector term only, then this condition leads to the paral-
lel orientation between n and the principal eigenvector of E
matrix; that is, tV1n / �n��1.

If the conformation for the lower bound of the total en-
ergy is also the lower-bound conformation even for this av-
eraging over the E matrix, Eq. �28� or �29� above together

with Eqs. �18� and �24�, n=�	
	R	�tU	1� and �E�
=����V��tV�1�, leads to Eq. �21� between the eigenvalues of
the C and E matrices as follows:


�C� 

− ��


�

tR1/�1��2�1/2

�

��


��
tV1/�1��2�1/2 if R = � V

�30�

=
�

�
with a negative constant, � � 0, �31�

where � is a constant taking any negative value.

III. DATA ANALYSES

Equation �17� indicates that with an optimum value for �0
the spectral relationship of Eq. �18� between E and C matri-
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ces tends to be satisfied in the lowest-energy conformations.
Here we will examine it by crudely evaluating pairwise in-
teractions with a contact potential between amino acids,
which was estimated as a statistical potential from contact
frequencies between amino acids observed in protein crystal
structures.

A. Pairwise contact potential used

A contact potential used is a statistical estimate �14� of
contact energies with a correction �13� for the Bethe approxi-
mation �30,31�. The contact energy between amino acids of
type a and b was estimated as

eab = err + ����ear
Bethe + �erb

Bethe +
��

��
�eab

Bethe� . �32�

err is part of contact energies irrespective of residue types
and is called a collapse energy, which is essential for a pro-
tein to fold by canceling out the large conformational en-
tropy of extended conformations, but cannot be estimated
explicitly from contact frequencies between amino acids in
protein structures. �ear

Bethe and �eab
Bethe are the values of �ear

and �eab evaluated by the Bethe approximation from the ob-
served numbers of contacts between amino acids. �ear+err is
a partition energy or hydrophobic energy for a residue of
type a. �eab is an intrinsic contact energy for a contact be-
tween residues of type a and b; refer to Ref. �13� for exact
definitions. The proportional constants for correction were
estimated as �� /��=2.2 and ���1 �13�. Here energy is
measured in kT units; k is the Boltzmann constant, and T is
the temperature. With the spectral expansion of the second
term of Eq. �32�, the contact energies can be represented by

eab = err + ����
�

e�Qa�Qb� + e0� , �33�

where e� and Q� are eigenvalues and eigenvectors for the
second term of Eq. �32� with a constant e0. Li et al. �32�

showed that the contact potential �30,31� corresponding to
�� /��=1 between residues can be well approximated by the
principal eigenvector term together with a constant term.

Then, the following relationship is derived for the eigen-
values and eigenvectors between the E matrix and the con-
tact energy matrix �eab�:

�0 = err + ��e0, �34�

��  ��e��
i

Qai�
2 = ��e��Qai�

2 �N , �35�

Vi� 
Qai�

��
i

Qai�
2 �1/2 , �36�

where ai is the amino acid type of the ith residue and N is the
protein length. It should be noted here that the eigenvectors
V� do not depend on the value of ��.

The C matrix ��C� is defined in such a way that nondi-
agonal elements take a value 1 for residues that are com-
pletely in contact, a value 0 for residues that are too far from
each other, and values between 1 and 0 for residues whose
distance is intermediate between those two extremes. Con-
tacts between neighboring residues are completely ignored—
that is, �ij =0 for �i− j��1. The geometric center of side-
chain heavy atoms or the C� atom for glycine is used to
represent each residue. Previously, this function was defined
as a step function for simplicity. Here, it is defined as a
switching function as follows �in the equation below to de-
fine residue contacts, ri means the position vector of a geo-
metric center of side-chain heavy atoms or the C� atom for
glycine�:

��ri,r j� � Sw��ri − r j�,d1
c,d2

c� , �37�

Sw�x,a,b� � �1 for x � a ,

��b2 − x2�2/�b2 − a2�3��3�b2 − a2� − 2�b2 − x2�� for a � x � b ,

0 for b � x ,
� �38�

where Sw is a switching function that sharply changes its
value from 1 to 0 between the lower distance d1

c and the
upper distance d2

c. Those critical distances d1
c and d2

c are
taken here as 6.65 Å and 7.35 Å, respectively.

B. Protein structures analyzed

Proteins each of which is a single-domain protein repre-
senting a different family of protein folds were collected. In

the case of multidomain proteins in which contacts between
domains are significantly less that those within domains, a
contact matrix could be approximated by a direct sum of
subspaces corresponding to each domain. This characteristic
of multidomain proteins has been used for domain decompo-
sition �33� and for identification of side-chain clusters in a
protein �34,35�. Thus, only single-domain proteins are used
here. Release 1.69 of the SCOP database �15� was used for the
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classification of protein folds. We have assumed that proteins
whose domain specifications in the SCOP database consist of
protein ID only are single-domain proteins. Representatives
of families are the first entries in the protein lists for each
family in the SCOP; if these first proteins in the lists are not
appropriate �see below� to use for the present purpose, then
the second ones are chosen. These species are all those be-
longing to the protein classes 1–4—that is, classes of all �,
all �, � /�, and �+� proteins. Classes of multidomain, mem-
brane, and cell surface proteins, small proteins, peptides, and
designed proteins are not used. Proteins whose structures
�36� were determined by NMR or having stated resolutions
worse than 2.0 Å are removed to assure that the quality of
proteins used is high. Also, proteins whose coordinate sets
consist either of only C� atoms or include many unknown
residues, or lack many atoms or residues, are removed. In
addition, proteins shorter than 50 residues are also removed.
As a result, the set of family representatives includes 182
protein domains.

IV. RESULTS

The spectral relationship between the C and E matrices is
analyzed for single-domain proteins that are representatives
from each family of classes 1–4 in the SCOP database of
version 1.69. The statistical potential used is crude, so that
the following analyses are limited only to relationships be-
tween the principal eigenvectors of the C and E matrices and
contact number vector. It should be noted here that a crude
evaluation of the pairwise interactions may make their rela-
tionships unclear.

Equation �24� indicates that the eigenvalues of the C ma-
trix are proportional to the square root of the second moment
of contact numbers. The proportional coefficient for the
principal eigenvalue of the C matrix—that is,
tR1n�1� / �tR11�n��—is plotted for each protein in Fig. 1. The

dotted lines are isocosine lines for the angle between the
principal eigenvector of the C matrix and contact number
vector, whose values are written in the figure. The ratios are
scattered between 1.2 and 1.6, although the value of the ratio
depends on the value of the abscissa, tR11 / �1�. The cosine of
the angle is upper bounded by the value of 1, and therefore
the value of the ratio of the cosines becomes correlated with
the value of the denominator of the ratio—i.e., tR11 / �1�. The
important fact is that the ratio takes values larger than 1,
making the principal eigenvalue larger. Here, it should be
noted that the lower bound of the conformational energy lin-
early depends on the principal eigenvalue of the C matrix;
see Eq. �17�. Thus, the larger the principal eigenvalue is, the
lower the conformational energy becomes. In practice, this
condition seems to yield a high correlation between the prin-
cipal eigenvector and the contact number vector; most of the
values of tR1n / �n� are greater than 0.7.

Now let us think about the relationship between the C
matrix and pairwise interactions. Pairwise interactions be-
tween residues are evaluated by using a statistical estimate
�14� of contact energies with a correction �13� for the Bethe
approximation. Figure 2 shows the average of tR1V1 over all
the proteins for each value of e0. The average �tR1V1� takes
the maximum value 0.699 at e0=1.3, although its decrements
according to the increase of e0 are not large. In the following,
e0=1.3 is used to calculate the eigenvectors of the E matri-
ces.

The value of tR1V1 for each protein is plotted against the
value of tR11 / �1� in Fig. 3. The value of tR1V1 is larger for
most of the proteins than that of tR11 / �1�. If the direction of
R1 is randomly distributed in the domain of Ri1�0, the
probability that tR1V1 is larger than tR11 / �1� must be
smaller than 0.5. Then, in such a random distribution, the
probability to observe Fig. 3, in which 175 of 182 proteins
fall into the region of tR1V1� tR11 / �1�, must be smaller than

182C175�0.5�175=exp�−91.6�. Also t-tests are performed for
the correlation coefficients between R1 and V1 in all pro-
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FIG. 1. The ratio of tR1n / �n� to tR11 / �1� is shown for each of
182 proteins, which are representatives of single-domain proteins
from each family of classes 1–4 in the SCOP version 1.69. R1 and n
are the principal eigenvector and contact number vector of the na-
tive C matrix, respectively. The dotted lines indicate the isovalue
lines for tR1n / �n�, whose values are shown in the figure.
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FIG. 2. The mean of tR1V1 over 182 proteins is plotted with
plus marks against e0. These proteins are representatives of single-
domain proteins from each family of classes 1–4 in the SCOP ver-
sion 1.69. R1 is the principal eigenvector of the native C matrix. V1

is the principal eigenvector for the E matrix with the value of e0

specified on the abscissa.
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teins. The geometric mean of probabilities for a significance
over 182 proteins examined here is equal to exp�−18.4�.
Thus, it is statistically significant that the direction of the
vector R1 is closer to V1 rather than 1 whose elements do not
depend on residues in proteins, This fact indicates that a
parallel orientation between the principal eigenvectors of the
C and E matrices is favored.

Equation �28� indicates that the mean contact energy vec-

tor �E� • (�t�. . . , 1
N�k�Eik�S� , . . .�) being antiparallel to the con-

tact number vector is favorable to decrease the conforma-
tional energy. Figure 4 does not show a strong but
statistically significant tendency that the value of

−t�E� •n / ��E� •��n�� tends to be larger than tn1 / ��n��1��; in

t-tests for correlation coefficients between �E� • and n, the
geometric mean of probabilities for a significance over 182
proteins is equal to exp�−27.9�. If the E matrix can be ap-
proximated by the principal eigenvector term, this fact indi-
cates that the contact number vector tends to be parallel to
the principal eigenvector of the E matrix. Actually this is the
case for the present estimate of the contact energies; the fig-
ure of tV1n / �n� versus tn1 / ��n��1�� is not shown. In t-tests
for correlation coefficients between V1 and n, the geometric
mean of probabilities for a significance is equal to
exp�−28.8�.

Here, we have shown that the principal eigenvector
among other eigenvectors of the C matrix seems to be a main
contributor to minimize the conformation energy. It is impor-
tant to take notice that the principal eigenvector of the C
matrix corresponds to the lower-frequency normal modes of
protein motion. Let us think about a Kirchhoff matrix that is
defined as

Kij � ni�ij − �ij , �39�

where �ij is a Kronecker’s delta. The eigenvalue of the
Kirchhoff matrix is equal to the square of normal-mode an-
gular frequency in a system in which ith and jth units are
connected to each other by a spring with a spring constant
equal to �ij. If the contact number ni is equal to a constant nc
irrespective of unit i, then the eigenvalue of the Kirchhoff
matrix is equal to nc−
	. In other words, in this case the
principal eigenvector of the C matrix corresponding to the
largest eigenvalue is equal to the eigenvector of the Kirch-
hoff matrix corresponding to the smallest eigenvalue—that
is, the lowest-frequency normal mode corresponding to a
motion that leads to a large conformational change �37�. In
actual proteins, the contact number ni depends on the unit i,
and then the correspondence between the eigenvectors of the
C matrix and the Kirchhoff matrix would become vague, but
it will be expected that the principal eigenvector of the C
matrix belongs to a subspace consisting of lower-frequency
normal modes.

In Fig. 5, plus marks indicate the norm of the principal
eigenvector of the C matrix of each of 182 proteins projected
on each subspace consisting of the n lowest-frequency nor-
mal modes indicated on the abscissa. In most of the proteins,
the principal eigenvector of the C matrix corresponds to the
lower-frequency normal modes of the Kirchhoff matrix. The
solid curves with cross marks indicate those norms averaged
over all proteins; their curves from the left to the right show
those values for the first, second, and third principal eigen-
vectors of the C matrix, respectively. The solid curve for the
principal eigenvector shows that about 70% of the principal
eigenvector of the C matrix can be explained by only ten
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FIG. 3. The value of tR1V1 is plotted against tR11 / �1� for each
of 182 proteins, which are representatives of single-domain proteins
from each family of classes 1–4 in the SCOP version 1.69. R1 is the
principal eigenvector of the native C matrix. V1 is the principal
eigenvector for the E matrix with e0=1.3. The dotted line shows the
line of equal values between the ordinate and abscissa.
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FIG. 4. The value of −t�E� •n / ���E� •��n�� is plotted against
tn1 / ��n��1�� for each of 182 proteins, which are representatives of
single-domain proteins from each family of classes 1–4 in the SCOP

version 1.69. e0=1.3 is used for the E matrix. The dotted line shows
the line of equal values between the ordinate and abscissa.
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lowest-frequency normal modes. Thus, the principal eigen-
vector of the C matrix is not only an important contributor to
minimize conformation energy, but also corresponds to the
lower-frequency normal modes of protein motion.

V. DISCUSSION

The lower bounds of the total contact energy lead to a
relationship between E and C matrices such that the contact
potential looks like a Go-like potential. Such a relationship
may be realized only for ideal proteins, but in real proteins,
atom and residue connectivities and steric hindrance not in-
cluded in the contact energy can significantly reduce confor-
mational space; the number of possible C matrices is of the
order of 2N�N−1�/2, but the conformational entropy of self-
avoiding chains is proportional to at most N, where N is the
chain length. As a result, Eq. �18� is expected to be approxi-

mately satisfied only for some singular spaces, probably for
singular values taking relatively large values, but at least for
the principal singular space. It was confirmed in the repre-
sentative proteins that the inner products of the principal
eigenvectors of E and C matrices are significantly biased
toward the value 1 at a certain value of the threshold energy
�0 for contacts, where their average over all proteins has a
maximum; see Fig. 3. Parallel relationships were also indi-
cated and confirmed between the principal eigenvector R1

and the contact number vector n of the C matrix and between

the mean contact energy vector �E� • and the contact number
vector n; see Figs. 1 and 4. In these analyses, a statistical
potential was used to evaluate the contact energies between
residues, and the coarse grain of the evaluations limits the
present analysis to a relationship between the principal
eigenvectors of the E and C matrices, and also can make the
relationship between these matrices vague. However, the re-
sults clarify the significance of the principal eigenvectors of
the E and C matrices and contact number vector in protein
structures. Here, it may be worthy of note that the principal
eigenvector of the C matrix corresponds to the lower-
frequency normal modes of protein structures.

The condition for the lowest bound of the total contact
energy, Eq. �10�, indicates that �0 in real proteins corre-
sponds to a threshold of contact energy for a unit pair to tend
to be in contact in the native structures. In principle, such a
threshold for contact energy depends on the size of the pro-
tein and protein architecture; it should be noted that many
types of interactions in real proteins are missed in represent-
ing interactions by contact potentials. The estimate of e0
shown in Fig. 2 is an estimate only for the present specific
type of a contact potential. The important things are that the
total contact energy is bounded by Eq. �8� with a constant
term and that spectral relationships of Eqs. �18� and �21�
between E and C matrices are expected for the conforma-
tions of the lower bounds if the E matrix is decomposed with
a constant term as shown in Eq. �13�.

Besides that, the spectral representation of C and E ma-
trices reveals that pairwise residue-residue interactions,
which depend only on the types of interacting amino acids,
but not on other residues in a protein, are insufficient and
other interactions including residue connectivities and steric
hindrance are needed to make native structures unique
lowest-energy conformations.
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