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Abstract

Background: A mechanistic codon substitution model, in which each codon substitution rate is proportional to the product
of a codon mutation rate and the average fixation probability depending on the type of amino acid replacement, has
advantages over nucleotide, amino acid, and empirical codon substitution models in evolutionary analysis of protein-coding
sequences. It can approximate a wide range of codon substitution processes. If no selection pressure on amino acids is
taken into account, it will become equivalent to a nucleotide substitution model. If mutation rates are assumed not to
depend on the codon type, then it will become essentially equivalent to an amino acid substitution model. Mutation at the
nucleotide level and selection at the amino acid level can be separately evaluated.

Results: The present scheme for single nucleotide mutations is equivalent to the general time-reversible model, but
multiple nucleotide changes in infinitesimal time are allowed. Selective constraints on the respective types of amino acid
replacements are tailored to each gene in a linear function of a given estimate of selective constraints. Their good estimates
are those calculated by maximizing the respective likelihoods of empirical amino acid or codon substitution frequency
matrices. Akaike and Bayesian information criteria indicate that the present model performs far better than the other
substitution models for all five phylogenetic trees of highly-divergent to highly-homologous sequences of chloroplast,
mitochondrial, and nuclear genes. It is also shown that multiple nucleotide changes in infinitesimal time are significant in
long branches, although they may be caused by compensatory substitutions or other mechanisms. The variation of selective
constraint over sites fits the datasets significantly better than variable mutation rates, except for 10 slow-evolving nuclear
genes of 10 mammals. An critical finding for phylogenetic analysis is that assuming variable mutation rates over sites lead to
the overestimation of branch lengths.
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Introduction

Growing DNA and protein sequence data is now a valuable

source of knowledge in many fields of science, especially in

evolutionary biology. Evolutionary history of DNA sequences is a

key to understand the diversity of homologous sequences. Any

method for inferring molecular phylogeny is implicitly or explicitly

based on the evolutionary model of nucleotide or amino acid

substitutions, and the reliability of phylogenetic analyses strongly

depends on models designed to approximate the substitution

processes of nucleotide and amino acid. For the evolutionary

analysis of protein-coding sequences, three types of models can be

used: nucleotide, amino acid, and codon substitution models.

Which type of model fits any sequence data better than the others?

Mutational events occur at the nucleotide level, but selective

pressure primarily operates at the amino acid level. Thus, a codon

substitution model has a potential to outperform both nucleotide

substitution models [1–3] and amino acid substitution models [4–

12], because it can take into account both mutational tendencies at

the nucleotide level and selective pressure on amino acid

replacements as well as a genetic code. Shapiro et al. [13]

proposed a codon position model, in which codon position is

incorporated into a nucleotide substitution model. This model is

computationally efficient but insufficient to take account of the

dependencies of selective pressure on amino acid replacements.

Codon substitution models are classified into either an empirical

codon substitution model or a mechanistic codon substitution

model. In empirical codon substitution models [14,15], substitu-

tion rates between codons were empirically estimated from a large

set of protein-coding sequences, and mutational tendencies at the

nucleotide level and selection pressure at the amino acid level

cannot be separated at all. Therefore, there is no parameter except

codon frequencies to tailor for each protein family. Delport et al.

[16] showed that empirical substitution matrices represent the

average tendencies of substitutions over various protein families by

sacrificing gene-level resolution.

In mechanistic codon substitution models, a mutational

mechanism at the nucleotide level and selection at the amino

acid level are distinguished in various levels of separation. If no

selection pressure on amino acids is taken into account, the codon

substitution model will become essentially equivalent to a

nucleotide substitution model. If mutation rates are assumed not

to depend on the codon type, then the model will become

essentially equivalent to an amino acid substitution model. Such a
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codon model with the infinitely large synonymous substitution

rate, was proved [17] to be exactly equivalent to an amino acid

substitution model. It was shown on protein-coding sequences that

codon substitution models are statistically superior to the

nucleotide and amino acid substitution models [18,19].

There are two type of models for the mutational scheme of

codon, depending on whether multiple nucleotide changes in

infinitesimal time are allowed [17,19–21] or not. Even though all

the empirical amino acid substitution models [4–6,8,10,11] and

the empirical codon substitution model [15] allow amino acid or

codon substitutions requiring multiple nucleotide changes in

infinitesimal time, only single nucleotide changes were assumed

to occur in infinitesimal time [7,18,22–25]. Multiple nucleotide

changes in infinitesimal time are biologically plausible, because

they can be caused by successive compensatory substitutions [26],

recombination, gene conversion and other mechanisms [27],

especially in long branches. It has been pointed out that assuming

multiple nucleotide changes in codon substitution models can

significantly improve the maximum likelihood (ML) value [19,20].

In the present models, mutational tendencies at the nucleotide

level are tailored to each gene by the general time-reversible

(GTR) model, but multiple nucleotide changes in infinitesimal

time are allowed. In the Singlet-Doublet-Triplet (SDT) mutation

model [20], single-nucleotide, doublet and triplet mutations

spanning codon boundaries are taken into account, but double

nucleotide mutations at the first and the third positions in a codon

were not taken into account. In the present model, it is assumed

[19] that nucleotide mutations occur independently at each codon

position and so any double nucleotide mutation occurs as

frequently as doublet mutations.

There are a variety of models for selection pressure on amino

acid replacements in mechanistic codon substitution models; (1)

models [17,18,21] based on empirical amino acid substitution

matrices, in which codon exchangeabilities for nonsynonymous

substitutions were evaluated on the basis of empirical amino acid

exchangeabilities, and selective constraints on amino acids are not

well separated from codon mutation rates, (2) equal-constraint

models [20,24,28,29], in which the difference between nonsynon-

ymous and synonymous substitution rates was taken into account

but the amino acid dependences of selective constraints on amino

acids were not taken into account, i.e., single selective constraints

for all types of amino acid substitutions, (3) physico-chemical-

constraint models [7,22,23], in which selective constraints for each

protein family were approximated in a linear function of the

selective constraints evaluated from physico-chemical properties of

amino acids, (4) fully-parameterized-constraint models [7,16,25],

in which selective constraints were grouped, and the number of

groups and the strength of selective constraint of each group were

optimized for a given protein phylogeny, and (5) site-specific

selection models [30], in which site-specific selection was modeled

in terms of site-specific residue frequencies in a codon substitution

model.

In the models [17,21] of the first category, codon exchange-

abilities for nonsynonymous codon substitutions requiring multiple

nucleotide changes are set to non-zero according to the empirical

amino acid exchangeabilities; the exchangeability is defined to be

an instantaneous rate divided by the equilibrium composition of

destination codon or amino acid. The method in the fourth

category has the highest resolution of selective constraints

employing as many substitution groups as necessary. However, it

seems to be a very computer-intensive calculation [25].

In the present model, selective constraints on the respective

types of amino acid replacements are tailored to each gene in a

linear function of a given estimate of selective constraints in the

same way with the physico-chemical-constraint models. The

simplest model for the selective constraints is to assume equal

constraint on amino acid replacements and equivalent to the

second category of model; it is named here the Equal-

Constraint model. Of course, physico-chemical estimates of

the selective constraints can also be used [19]. Better estimates

are those that were estimated [19] by maximizing the respective

likelihoods of observed amino acid or codon substitution

frequency matrices.

A property of codon substitution models in which synonymous

substitutions can be identified is an advantage over nucleotide and

amino acid substitution models. Significance of rate variation over

sites in proteins has been demonstrated mostly in nucleotide

substitution models and empirical amino acid substitution models

[31–33]. Variable rates of nucleotide and amino acid substitutions

over sites can be caused not only by the variation of mutation rate

but also by the variation of selective constraint over sites.

However, in the nucleotide and the amino acid substitution

models, synonymous substitutions cannot be recognized, and

therefore the variations of mutation rate and of selective constraint

over sites cannot be distinguished from each other. On the other

hand, the variations of selective constraint and mutation rate can

be distinguished from each other in codon substitution models,

assuming no selective pressure on synonymous mutations at the

amino acid level. It is reasonable from a viewpoint of protein

structure and function that amino acid replaceabilities strongly

depend on sites in a protein [34]. Molecular mechanisms are not

known to cause significantly variable mutation rates over sites

within the exons of a gene. Here, we examine which model fits

data statistically better. In the present model, either the variation

of mutation rate or the variation of selective constraint is taken

into account, although both is not taken into account at the same

time because of heavy computational load. Yang et al. [29] also

studied heterogeneous selection pressure at amino acid sites by

codon substitution models.

Besides the variation of substitution rate over sites, the variation

of substitution rate over time at each site is also possible. The site-

specific variation of substitution rate over time was first discussed

as a covarion model by Fitch and Markowitz [35]. Recently, a few

cases indicating its significance have been reported [36,37]. Here

we take into account the variation of mutation rate over time at

each site in a simple approximation.

The estimation of branch lengths is critical on the estimation of

phylogeny and divergence times. We examine how differently

branch lengths are estimated between models. The present

mechanistic codon substitution model can simulate a wide range

of codon substitution processes by changing parameters, and can

provide biologically meaningful information at both nucleotide

and amino acid levels such as transition/transversion rate bias, the

ratio of multiple nucleotide changes, the strength of selective

constraints on amino acids, the variation of mutation rate or

selective constraints over sites, and also the variation of mutation

rate over time in branches. Here, the present codon substitution

models with the various sets of parameters are extensively studied,

and the advantages of the present model over other models are

demonstrated.

Methods

A time-reversible Markov model for substitutions
When substitutions independently occur at each site with a

constant substitution rate Rkl per unit time from codon or amino

acid k to l, the substitution probability matrix S(t) at time t is

calculated as

A Mechanistic Codon Substitution Model
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S(t)~ exp (Rt) ð1Þ

Assuming that the detailed balance condition between states is

satisfied, i.e., fkS(t)kl~flS(t)lk and fkRkl~flRlk, the substitu-

tion rate Rkl is represented as

Rkl~rklfl , rkl~rlk for k=l ð2Þ

where fk is the equilibrium composition;
P

k fkS(t)kl~fl. The

symmetric matrix r is named an exchangeability matrix. In the

case of the codon substitution matrix, the equilibrium frequencies

of stop codons are set to be equal to 0, and therefore the

probability flow from any to a stop codon and its inverse flow are

always equal to 0. The unit of time is chosen in such a way that the

total rate of R is equal to 1;

X
k

fk

X
l=k

Rkl~{
X

k

fkRkk~1 ð3Þ

Therefore, only the relative values among rkl are meaningful.

In a given phylogeny of molecular sequences, a substitution

process of codon or amino acid is assumed to be in equilibrium. In

other words, the substitution process is assumed to be time-

reversible. Also, exchangeabilities frklg are approximated not to

depend on the equilibrium frequencies ffkg; this model is specified

here with a suffix ‘‘F’’ according to a common naming convention.

Empirical amino acid substitution models converted into
codon substitution models

Amino acid exchangeabilities frabg for amino acid substitutions

have been estimated from large sets of protein sequences. From

nuclear proteins, the JTT [5], the WAG [10], and the LG [11]

rate matrices were estimated. The mtREV [6] substitution

probability matrix was estimated from vertebrate mitochondrial

proteins, and the cpREV10 [8] and the cpREV64 [38] matrices

were estimated from chloroplast proteins of 10 species and of 64

species, respectively.

These amino acid substitution models can be converted into

codon substitution models by defining codon exchangeabilities on

the basis of amino acid exchangeabilities between encoded amino

acids [17–19,21]. Here we consider the following simplest

conversion from the amino acid models into codon models to

examine the performance of the empirical amino acid substitution

models in phylogenetic inference from coding sequences.

The codon exchangeability rmn between nonsynonymous codons

m and n is defined to be proportional to the empirical amino acid

exchangeability r
empirical

ambn
between encoded amino acids am and bn

with a parameter w0 to adjust the ratio of synonymous to non-

synonymous substitution exchangeability. Codon exchangeabilities

between synonymous codons are taken to be all equal to one

another in such a way that in the case of w0~0 they are equal to

the maximum exchangeability of nonsynonymous substitutions.

rmn~
C onst r

empirical
ambn

ew0 for am=bn

C onst maxamaxb=ar
empirical

ab for am~bn

(
ð4Þ

where 00empirical00 [fJTT, WAG, LG, mtREV, cpREV10, cp
REV64g. The arbitrary scaling constant C onst is determined by

Eq. 3. In the limit of w0?{?, this model is exactly equivalent to

the corresponding amino acid substitution model [17]. This model

was named as the SK-P1 model by Seo and Kishino [17], and is

called here by the name of the empirical amino acid substitution

matrix with a suffix meaning the number of ML parameters such

as JTT-n, WAG-n, LG-n, mtREV-n, cpREV10-n, and cpREV64-n.

Empirical codon substitution models
Kosiol et al. [15] estimated codon exchangeabilities frmng from

nuclear-encoded sequences; this substitution rate matrix is called

here the KHG matrix. This empirical codon substitution model

has been extended here with a parameter w0 to adjust the ratio of

synonymous to non-synonymous substitution exchangeability.

rmn~C onst r empirical
mn ½dambnz

max
mn

(r empirical
mn dambn )

max
mn

(r
empirical

mn (1{dambn ))

(1{dambn )� exp (w0(1{dambn ))

ð5Þ

for m=n, where empirical[fKHGg, and dambn is the Kronecker’s

d. The arbitrary scaling constant C onst is determined by Eq. 3.

The exchangeabilities of nonsynonymous codon substitutions are

scaled in such a way that in the case of w0~0 the maximum

exchangeability of nonsynonymous substitutions is equal to that of

synonymous substitutions. This model is called KHG-n, where the

suffix n means the number of ML parameters.

A mechanistic codon substitution model with multiple
nucleotide changes

In the present mechanistic codon substitution model [19], the

substitution rate Rmn is represented as the product of a mutation

rate Mmn and the average rate of fixation Fmn, which is defined to

be the average fixation probability multiplied by the chromosomal

population size, for mutations from codon m to n under selection

pressure; Rmn! MmnFmn for m=n. The M is also assumed to

satisfy the detailed balance condition; f mut
m Mmn~f mut

n Mnm,

where f mut
n is the equilibrium codon composition of the rate

matrix M. Under this assumption, the average fixation rate Fmn

must be represented as the product of the two terms, fn=f mut
n and

ewmn , where wmn~wnm; Fmn~(fn=f mut
n )ewmn for m=n. Then, the

exchangeability rmn can be represented as

Rmn~rmnfn~C onst Mmn
fn

f mut
n

ewmn for m=n ð6Þ

The arbitrary scaling constant C onst is is determined by Eq. 3.

The frequency-dependent term fn=f mut
n represents the effects of

selection pressures at the DNA level as well as at the amino acid level,

which change the codon frequency from the mutational equilibrium

frequency f mut
n to the frequency fn specific to a gene. The fixation

rate F was explicitly given as a function of the fitnesses of mutants m
and n [28,30]. The fixation rate is obviously equal to 0 for lethal

mutations and equal to 1 for neutral mutations. Here, we approximate

the average quantity ewmn over mutants to be independent of codon

frequencies. This quantity ewmn is essentially the same as the one called

the rate of acceptance by Miyata et al. [39]. We assume that selection

pressure against codon replacements appears primarily on an amino

acid sequence encoded by a nucleotide sequence; in other words, wmn

for codon pair (m,n) is equal to the selective constraint wambn
for the

encoded amino acid pair (am,bn).

ewmn:
e

wambn for m,n 6 [ f stop codons g and m=n

0 for m or n[f stop codons g and m=n

(
ð7Þ
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At the amino acid level, there should be no selection pressure against

synonymous mutations. Thus, the wab satisfies

wab~wba , waa~0 ð8Þ

Selective constraints wmn are evaluated for a specific protein family

in a linear function of a given estimate of wab;

wab:min½bw estimate
ab zw0(1{dab),0� ð9Þ

where w estimate
ab with 00estimate00 [fEqual{Constraint, EI,

JTT{ML91z, WAG{ML91z, LG{ML91z, KHG{ML
200g means the estimate of wab, which is equal constraint on

amino acids (w estimate
ab ~0 or b~0), a physico-chemical estimate

based on the Energy-Increment-based (EI) method [19], or a ML

estimate [19] from the empirical substitution frequency matrix of

JTT, WAG, LG, or KHG. The value of wab is non-positive,

assuming that on average there is negative selection on amino acid

replacements; of course, w estimate
ab ƒ0 [19]. The parameter b,

which is non-negative, adjusts the strength of selective constraints

for a given protein family. The parameter w0 directly controls the

ratio of nonsynonymous to synonymous substitution exchange-

ability. Positive selection is taken into account when selective

constraints are variable over sites.

The Equal-Constraint model with w0~0 is called the No-

Constraint model and is equivalent to a nucleotide substitution

model. In the model EI, ŵw estimate
ab :Dêe c

abzDêe v
ab, where Dêe c

ab and

Dêe v
ab represent the mean increment of contact energies between

residues and the mean volume change due to an amino acid

replacement, respectively; see Supporting Information, Text S1, in

[19]. The selective constraint matrices w estimate with 00estima
te00 [fJTT{ML91z,WAG{ML91z, LG{ML91zg were

those estimated by maximizing the respective likelihoods of the

1-PAM amino acid substitution frequency matrices of JTT, WAG,

and LG in the ML-91+ model [19]. Similarly, the matrix

w KHG{ML200 were estimated from the 1-PAM KHG codon

substitution frequency matrix in the ML-200 model [19]. These

estimates of selective constraints are available as Supporting

Information, Data S1, in [19]. These models are called here by the

name of a selective constraint matrix with a suffix meaning the

number of ML parameters such as Equal-Constraint-n, EI-n, JTT/

WAG/LG-ML91+-n, and KHG-ML200-n.

The mutation rate matrix M is defined in terms of nucleotide

mutation rates as follows.

Mmn: P
3

i~1
½dmini

z(1{dmini
)Bi,mini

� for m=n ð10Þ

where Bi is a mutation rate matrix between the four types of

nucleotides at the ith codon position, dmini
is the Kronecker’s d, and

the index mi means the ith nucleotide in the codon m; m~(m1,m2,m3)
where mi[f a, t, c, g g. Assuming that the rate matrix Bi satisfies

the detailed balance condition, it is represented as

Bi,mini
~mi,mini

f mut
i,ni

for i~1,2,3 ð11Þ

mi,mini
~mi,nimi

ð12Þ

f mut
n~(n1,n2,n3)~f mut

1,n1
f mut
2,n2

f mut
3,n3

ð13Þ

where f mut
i,ni

is the equilibrium composition of nucleotide ni at the

ith codon position, and mi,mini
is the exchangeability between

nucleotides mi and ni at the ith codon position. Because the Bi is

assumed to satisfy the detailed balance condition, the M also

satisfies the detailed balance condition.

If multiple nucleotide changes were completely ignored, then

Eq. 10 would be simplified as Mmn~((1{dm1n1
)B1,m1n1

dm2n2
dm3n3

)
z(dm1n1

({dm2n2
)B2,m2n2

dm3n3
)z(dm1n1

dm2n2
(1{dm3n3

)B3,m3n3
), whose

formulation for a codon mutation rate matrix with Eq. 11 is the

same as the one proposed by Muse and Gault [24]. Here, it should

be noted that Bi,mini
in Eq. 11 is defined to be proportional to the

equilibrium nucleotide composition f mut
i,ni

. Alternatively, one may

define Mmn as Mmn~P3
i~1½dmini

z(1{dmini
) mi,mini

�f mut
n in the

same way as Miyazawa and Jernigan [22] and others [7,23]

defined it to be proportional explicitly to the composition of the

base triplet, f mut
n . This alternative definition with Eqs. 6 is

equivalent to Eqs. 10 and 11 with f mut
ni

~0:25 and mi,mini
[

4mi,mini
, and thus it is a special case in the present formulation.

The No-Constraint model, in which there is no selection

pressure on amino acid replacements (wmn~0), is a nucleotide

substitution model extended to allow multiple nucleotide changes

in infinitesimal time. Also, it is useful to note that the present

model in the special case of Mmn~constant becomes equivalent to

an amino acid substitution model converted into a codon

substitution model; if (mi)mini
~4 and f mut

i,ni
~0:25, then Mmn~1

and Eq. 6 will become rmn!ewmn and equivalent to Eq. 4 with

r
empirical

ab !ebw estimate
ab .

In the present analyses, we assume for simplicity that mi,mini
and

f mut
i,ni

do not depend on codon position i; that is, mi,jg~mjg and

f mut
i,j ~f mut

j , where j,g[fa,t,c,gg. This approximation is reason-

able because mutational tendencies may be independent of a

nucleotide position in a codon. Let us define m½tc�½ag� to represent

the average of the exchangeabilities of the transversion type, mta,

mtg, mca, and mcg, and likewise mtcjag to represent the average of

the exchangeabilities of the transition type, mtc and mag. We use

the ratios fmjg=m½tc�½ag�g as parameters for exchangeabilities, and

m(:m½tc�½ag�) to represent the ratio of the exchangeability of

double nucleotide change to that of single nucleotide change and

also the ratio of the exchangeability of triple nucleotide change

to that of double nucleotide change; note that the exchange-

abilities of single, double, and triple nucleotide changes are of

O(m½tc�½ag�),O(m2
½tc�½ag�), and O(m3

½tc�½ag�) in Eq. 3, respectively, and

that Eq. 3 must be satisfied. Then, multiple nucleotide changes

in infinitesimal time can be completely neglected by making the

parameter m(:m½tc�½ag�) approach zero with keeping fmjg=
m½tc�½ag�g constant in Eq. 3. Also, it is noted that unlike the SDT

model [20] double nucleotide changes at the first and the third

positions in a codon are assumed to occur as frequently as doublet

changes.

The number of parameters except equilibrium codon frequen-

cies in the mechanistic codon substitution model is equal to 11;

they are b, w0, m(:m½tc�½ag�), mtcjag=m½tc�½ag�, mag=mtcjag, mta=
m½tc�½ag�, mtg=m½tc�½ag�, mca=m½tc�½ag�, f mut

a , f mut
c , and f mut

g , and

fixed at certain values or optimized as ML parameters.

Variations of mutation rate and of selective constraint
across codon sites

Taking account of the variation of amino acid substitution rate

over sites always increases the maximum likelihood of a

phylogenetic tree in the analysis of amino acid sequences [31].

The variation of amino acid substitution rate can be caused by the

variation of mutation rate and also by the variation of selective

constraint on amino acids. Here, the variation of either mutation

A Mechanistic Codon Substitution Model

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e28892



rate or selective constraint over sites is taken into account, but both

are not taken into account at the same time because of a heavy

computational load.

The variation of mutation rate over codon sites is also assumed

to obey a C distribution [31] with a shape parameter a and the

mean equal to 1, which is then approximated by a discrete-gamma

distribution [32,40] with m categories, each with equal probability,

This model is specified with a suffix dGmr whose m means the

number of categories.

The variation of selective constraint over amino acid sites is

assumed to obey a discrete-gamma distribution, too. In this model,

the average of selective constraints over amino acid pairs (the

mean acceptance rate),
P

a

P
bwa ew

ab=190 in the mechanistic

codon substitution model or w0 in other codon substitution

models, is assumed to vary according to a discrete-gamma

distribution. The rate matrix of each category is scaled so that

the mean rate matrix satisfies Eq. 3. This model is specified with a

suffix dGms whose m means the number of categories.

In the mechanistic codon substitution model, selective con-

straint wi,ab for ith category in a discrete-gamma distribution is

calculated to satisfy the following equations.

X
i

Cip(Ci)~
1

190

X
a

X
bwa

ew
ab ð14Þ

1

190

X
a

X
bwa

e
wi,ab~Ci ð15Þ

e
wi,ab:

min½ci exp (bw estimate
ab zw0(1{dab)),1� for Civ1

Ci for Ci§1

(
ð16Þ

where Ci is the value of the i th category in the discrete-gamma

distribution whose mean is equal to the average of ewab over all

amino acid pairs and whose shape parameter is equal to a;

0ƒCivCiz1. If Civ1 and ci exp wabƒ1 for Va,b, ci will be

simply equal to a point of the discrete-gamma distribution whose

mean is equal to 1.

In the other codon models, the equal amino acid constraint wi,0

for i th category in Eq. 4 and Eq. 5 is calculated from the following

equations.

X
i

Cip(Ci)~ew0 ð17Þ

ewi,0~Ci~cie
w0 ð18Þ

In this case, Ci is and ci are points of the discrete-gamma

distributions, whose means are equal to exp w0 and 1, respectively,

with the shape parameter a.

The shape parameter a of the discrete-gamma distribution for

the variation of mutation rate or selective constraint is optimized

as one of ML parameters. Equal probability of each category is

used for the mutation rate variation, but it may be inappropriate

for the variation of selective constraint, because Ci(iw1) is often

too small for a rate matrix to be significantly different between

Ci{1 and Ci. In such a case, the prior probability of Ci{1 is

increased to make the rate matrices for Ci{1 and Ci significantly

different.

A simple approximation for the variation of mutation
rate over time

A mutation rate at each site may vary in each branch, especially

long branches, of a phylogenetic tree. If the variation of mutation

rate is synchronized among sites, it will be reflected by the length

of each branch. The unsynchronized portion of rate variation

among sites is considered. Here, a simple approximation for the

variation of mutation rate over time is provided. The mutation

rate matrix M and therefore the substitution rate matrix R are

assumed to vary in time only by a scalar factor, m(t) at time t. The

expected values of the mean and the variance of the total

substitution rate in a branch whose length is equal to T are as

follows.

E(

ðT

0

m(t)dt)~E(m)T ð19Þ

E((

ðT

0

(m(t){E(m))dt)2)~

ðT

0

ðT

0

E((m(t){E(m))(m(t’){E(m)))dtdt’

^2tE((m{E(m))2)T (t%T)) ð20Þ

The mutation rate as a function of time is assumed to be

autocorrelated with a correlation time t%T . In this case, the

mean and the variance are both the linear functions of T . For the

variation of the total mutation rate in the branch of the length T ,

we assume a C distribution whose scale and shape parameters are

equal to s^2tE((m{E(m))2)=E(m) and a~E(m)T=s, respective-

ly. Then, the expected substitution matrix is:

E(S(E(m),T)):
ð?

0

eRxC(x; E(m)T=s,s)dx

~

ð?
0

1

C(E(m)T=s)
expf{(I{sR)

x

s
g( x

s
)E(m)T=s{1 dx

s

~(I{sR){E(m)T=s~(E(S(1,1)))E(m)T ð21Þ

where C(x; E(m)T=s,s) is the probability density function of a C
distribution with a scale parameter s and a shape parameter equal

to E(m)T=s, C(E(m)T=s) is the C function, and I is the identity

matrix. Then, log E(S(1,1)) is used instead of R as a rate matrix;

the rate matrix log E(S(1,1)) is scaled to make the mean rate matrix

satisfy Eq. 3. A constant mutation rate corresponds to s~0. The

scale parameter s is set to 0 or is optimized as a ML parameter.

This approximation for the variation of mutation rate over time

is very simple and does not require any additional computational

time, although the performance will be limited in comparison with

a more complete approximation [36]. However, the ML estimate

of s in this approximation may be influenced by the variation of

mutation rate across sites, because the mean of the substitution

matrix over sites is represented by a similar functional form to

E(S(E(m),T)); assuming that mutation rates vary across sites with

a C distribution, the mean of substitution matrix over sites for a

branch of the length T is formulated as SS(E(m),T)T:Ð?
0

exp (RTx)C(x; E(m)=s,s)dx~(I{sRT){E(m)=s, which is

equal to the expected substitution matrix in the case of twT .
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Datasets of protein-coding sequences used to evaluate
codon substitution models

Substitution models are evaluated by using five datasets of

codon sequences; (1) divergent and (2) closely-related chloroplast-

encoded genes, (3) fast-evolving interspecific and (4) highly-

polymorphic intraspecific mitochondrial genes, and (5) slowly-

evolving nuclear genes.

1. Dataset cpDNA-9: Divergent codon sequences consisting of 45

protein-coding genes from 9 chloroplast genomes, whose

protein sequences were used to estimate the cpREV10 by

[8]; Synechocystis PCC6803, which was the outgroup sequence in

their analysis, is not used in the present analysis. The codon

sequences were obtained from the NCBI RefSeq database of

organelle genomes. The total codon length of aligned genes is

equal to 12507, and the minimum amino acid identity between

sequences is equal to 0.58. The tree topology that was

estimated as Tree-1 by [8] is used here as the most probable

tree. Overlapped segments between genes were removed from

codon sequences.

2. Dataset cpDNA-55: Codon sequences consisting of 52 protein-

coding genes from 55 chloroplast genomes of the major

angiosperm lineages, which are genome sequences available in

the NCBI RefSeq database out of the 64 genomes analyzed in

[41], and which are genes owned by all 55 taxa. The tree

topology estimated by [41] is used as the most probable tree in

the present analysis. The total codon length of aligned genes is

equal to 14128, and the minimum amino acid identity between

the sequences is equal to 0.73. The cpREV64 [38] was

estimated from the full set of 77 protein-coding genes in the 64

genomes.

3. Dataset mammalian-mtDNA: Interspecific mammalian mito-

chondrial codon sequences consisting of 12 protein-coding

genes from 69 mammalian species [42], whose genome

sequences were obtained from the NCBI RefSeq database of

organelle genomes. The total codon length of aligned genes is

equal to 3618, and the minimum amino acid identity between

the sequences is equal to 0.66. The tree topology that was

estimated as Tree-6 by [42] is used here as the most probable

tree. Overlapped segments between genes were removed from

codon sequences.

4. Dataset human-mtDNA: Intraspecific human mitochondrial

codon sequences consisting of 12 protein-coding genes from 53

human races [43], whose genome sequences were obtained

from a human mitochondrial genome database (MITOMAP).

The total codon length of aligned genes is equal to 3579, and

the minimum amino acid identity between the sequences is

equal to 0.99. The present analyses are done using the

neighbor-joining tree topology estimated by [43]. Overlapped

segments between genes were removed from codon sequences.

5. Dataset nDNA: Codon sequences of the 10 most slowly-

evolving genes out of the 2789 nuclear genes of 10 mammals

that were analyzed by [44]. The tree topologies estimated by

[44] are used for respective genes and the tree-1 named by

them is used here for the analyses of the concatenated genes.

The total codon length of aligned genes is equal to 1112, and

the minimum amino acid identity between the sequences is

equal to 0.97.

Homologous codon sequences are aligned every gene by

ClustalW2 [45] that is modified to align codon sequences with

codon score matrices [19]. The ML values for each model are

calculated for each gene and also for the concatenated sequences

of all genes by Phyml [46] also modified to analyze codon

sequences.

Statistical comparison of codon substitution models
Model selection must be pursued with considerable attention

[47]. For the comparison of models one of which is a special case

of the other, the likelihood ratio test (LRT) [48] can be used to test

the superiority of a nesting model to nested models. Models that

are not nesting or nested can be compared using Akaike

information criterion (AIC) [49], Bayesian information criterion

(BIC) [50], a decision-theoretical approach [51,52], and the Bayes

factor [53]. Here, AIC and BIC for a given tree topology of

aligned codon sequences are used to compare codon substitution

models derived from various empirical amino acid and codon

substitution rate matrices and mechanistic codon substitution

models with the wide range of selective constraint matrices. The

AIC and BIC are defined as follows [18]:

AIC:{2‘( ĥh )z2K ð22Þ

BIC:{2‘( ĥh )zK log n ð23Þ

where K is the number of adjustable parameters, ĥh is the vector of

the ML estimates of the parameters, ‘( ĥh ) is the maximum log-

likelihood value, and n is the number of codons in a codon

alignment. The model whose AIC or BIC is the minimum is

regarded as the best model.

Results and Discussion

The naming convention of the present models is briefly

described in Table 1. In all models, the equilibrium frequencies

of codons are estimated to be equal to codon frequencies in

sequences. Other parameters including the scale parameter s of a

C distribution for the variation of mutation rate over time are set

to a certain value or optimized by maximizing the likelihood of a

given topology of a phylogenetic tree. For the empirical amino

acid substitution models converted into the codon substitution

models, s~0 was assumed, because it seems not to be well

matched with these models. In the empirical codon substitution

model, s was optimized as well as w0. In the mechanistic codon

substitution models, all 12 parameters including s for the

substitution rate matrix will be optimized if the AIC and the

BIC values of a phylogenetic tree are decreased. For the separating

analyses of human-mtDNA and the concatenating and the

separating analyses of nDNA, which are both datasets consisting

of highly-homologous sequences, the five parameters of b, w0, s,

m(:m½tc�½ag�), and mtcjag=m½tc�½ag� were optimized with f mut j ~

0:25 and mag=mtcjag~mta=m½tc�½ag�~mtg=m½tc�½ag�~mca=m½tc�½ag�~
1:0. In all models, the variation of mutation rate or the variation of

selective constraint over sites is taken into account. Both the

variations over sites were approximated by a discrete-gamma

distribution [32] with 4 categories. The shape parameter a of the

discrete-gamma distribution is optimized by maximizing the

likelihood. Equal probability was used for each category in all

models of rate variation. In the models of variable selective

constraints, equal probability was used only for the non-

mechanistic codon models for the cpDNA-9, and the different

sets of prior probabilities on the basis of the values of Ci were used

for the other models; p(C1)~0:50,p(C2)~0:25,p(C3)~p(C4)~
0:125 for the datasets cpDNA-9, cpDNA-55, and mammalian-

mtDNA, and p(C1)~0:75,p(C2)~0:125,p(C3)~p(C4)~0:0625
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for the human-mtDNA and the nDNA. The AIC and the BIC are

used for statistical comparisons of models.

Mechanistic codon substitution models outperform
other substitution models

First, each gene in a dataset is separately aligned and then all

aligned sequences are concatenated. The maximum log-likelihood

values of a given phylogenetic tree of concatenated genes for

various codon substitution models are listed in Tables 2, 3, 4, 5, 6

for cpDNA-9, cpDNA-55, mammalian-mtDNA, human-mtDNA,

and nDNA, respectively. Values in parentheses indicate that the

corresponding parameters are fixed at the value specified. The

maximum log-likelihood (‘), AIC and BIC values for each model

are listed in these tables with the difference (D‘, DAIC , and

DBIC ) from those of a reference model. For the datasets cpDNA-

9, cpDNA-55, and nDNA that use the universal codon table, the

empirical codon substitution model KHG-2-F-dG4s estimated

from nuclear-encoded sequences is used as a reference state; in the

KHG-2-F-dG4s, s is optimized as well as w0. For mitochondrial

genomes that use a minor genetic code, no empirical codon

substitution rate matrix is available, and so the codon substitution

model, mtREV-1-dG4s, which is converted from the empirical

amino acid substitution matrix mtREV estimated from mitochon-

drial proteins, is used as a reference state; in the mtREV-1-F-

dG4s, s~0 is assumed, and only w0 is optimized.

In the case of mitochondrial genes, i.e., mammalian-mtDNA

and human-mtDNA, the models based on mtREV always show

the smallest DAIC and DBIC , i.e., the best performance, in the

empirical amino acid substitution models converted into the codon

substitution models. For the dataset cpDNA-55, the models

converted from cpREV64 show the best performance in the

models converted from the empirical amino acid substitution

models, and the models converted from cpREV10 perform best

for the dataset cpDNA-9. These results are reasonable because the

amino acid substitution probability matrix mtREV [6] was

estimated from mitochondrial proteins, and cpREV64 [38] and

cpREV10 [8] were estimated from the full sets of chloroplast

proteins corresponding to cpDNA-55 and cpDNA-9, respectively;

see the method section. A rather interesting result is that the

models converted from cpREV64 shows larger DAIC and DBIC
for cpDNA-9 than the models converted from LG, WAG, and

JTT that were estimated from nuclear-encoded proteins, This fact

indicates that substitution tendencies vary between genes and

cannot always be represented by the average tendencies of

substitutions. Delport et al.[16] showed that the empirical

substitution matrices represent the average tendencies of substitu-

tions over various protein families by sacrificing gene-level

resolution.

The empirical codon substitution model KHG performs

significantly better for chloroplast-encoded and nuclear-encoded

genes than all the amino acid substitution models converted into the

codon models. It has often be insisted that synonymous substitutions

are saturated between distantly related genes and so substitution

analyses at the codon level hardly include more information than

those at the amino acid level. However, a fact that KHG performs

better even for the distantly related sequence family (cpDNA-9) than

the models converted from cpREV10 indicates that codon

sequences include more information than amino acid sequences

even in the case of distantly related sequences.

If the amino acid substitution models converted into codon

models are compared with the mechanistic codon substitution

models, the superiority of the codon substitution models will be

clearer. For all datasets, the mechanistic codon models with the

various estimates of selective constraints show significantly lower

Table 1. Brief description of models.

A. Empirical amino acid substitution models converted into codon substitution models

JTT-n -F-dGm[rs],a WAG-n -F-
dGm[rs], LG-n -F-dGm[rs],
cpREV10-n -F-dGm[rs],
cpREV64-n -F-dGm[rs],
mtREV-n -F-dGm[rs]

The empirical amino acid exchangeabilities of JTT [5], WAG [10], LG [11], cpREV10 [8], cpREV64 [38], and mtREV [6] are used as

fr empirical
ab g in Eq. 4. The suffix n means the number of parameters optimized for the substitution rate matrix; the w0 is a ML parameter

when n§1.

B. Empirical codon substitution models

KHG-n -F-dGm[rs]a
The empirical codon exchangeabilities of KHG [15] are used as fr empirical

mn g in Eq. 5. The suffix n means the number of parameters

optimized for the substitution rate matrix; the w0 is a ML parameter when n§1, and s is equal to 0 for n~1 and optimized when n~2.

C. Mechanistic codon substitution models

No-Constraint-n -F-dGmra,
Equal-Constraint-n -F-dGm[rs]

b~0 for both models and also w0~0 for the No-Constraint model; see Eq. 9. The suffix n, whose maximum number is equal to 10 or
11, means the number of parameters optimized for the substitution rate matrix.

EI-n -F-dGm[rs]a
ŵw estimate

ab :Dêe c
abzDêe v

ab based on the Energy-Increment-based (EI) method [19] is used to estimate wab in Eq. 9. The Dêe c
ab and Dêe v

ab

represent the mean increment of contact energies between residues, and the mean volume change due to an amino acid
replacement, respectively; see Supporting Information, Text S1, in Miyazawa [19]. The suffix n, whose maximum number is equal to 12,
means the number of parameters optimized for the substitution rate matrix.

JTT-ML91+-n -F-dGm[rs],a

WAG-ML91+-n -F-dGm[rs],
LG-ML91+-n -F-dGm[rs]

Selective constraints fw JTT=WAG=LG{ML91z

ab g estimated by maximizing the likelihood of JTT/WAG/LG [5,10,11] in the ML-91+ model

[19] are used as fw estimate
ab g in Eq. 9. The suffix n, whose maximum number is equal to 12, means the number of parameters optimized

for the substitution rate matrix.

KHG-ML200-n -F-dGm[rs]a
Selective constraints fw KHG{ML200

ab g estimated by maximizing the likelihood of the KHG codon substitution matrix [15] in the ML-200

model [19] are used as fw estimate
ab g in Eq. 9. The suffix n, whose maximum number is equal to 12, means the number of parameters

optimized for the substitution rate matrix.

aIn the models specified with the suffix ‘‘F’’, equilibrium codon frequencies are assumed to be equal to codon frequencies in codon sequences. dGm[rs], i.e., dGmr or
dGms, means that the variation of mutation rate or selective constraint over site is approximated by a discrete gamma distribution with m categories [32], respectively;
m~1 means no variation and the suffix dG1[rs] is omitted.

doi:10.1371/journal.pone.0028892.t001
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DAIC and DBIC than the amino acid substitution models

converted into the codon models. The Equal-Constraint model

always performs worst, and is far inferior to the amino acid

dependent constraint models for the phylogenetic trees including

long branches such as the datasets cpDNA-9 and mammalian-

mtDNA. Only for the phylogenetic trees consisting of extremely

short branches such as the datasets human-mtDNA and nDNA, it

is not remarkably worse than the amino acid dependent constraint

models; amino acid identities between sequences are equal to or

larger than 0:99 in human-mtDNA and 0:97 in nDNA.

Consistently, DAIC and DBIC for the No-Constraint model,

which is essentially equivalent to a nucleotide substitution model,

are extremely larger for cpDNA-9 and mammalian-mtDNA, but

smaller for cpDNA-55 and human-mtDNA than those for the

reference model. These results can be explained to be because the

amino acid dependencies of selective constraints must be taken

into account to correctly evaluate amino acid substitutions, which

occur in long branches, in order to precisely estimate branch

lengths. One of the interesting facts is that the No-Constraint

model is better for cpDNA-55 and human-mtDNA but worse for

nDNA than the reference model, even though the phylogenetic

tree of nDNA consists of short branches. This characteristic

feature results from a fact that the genes in nDNA are slowly-

evolving genes with strong selective constraints on amino acids;

note that sequences in the dataset nDNA are highly homologous

with amino acid identities greater than 0.97 but are collected from

a wide range of mammalian species, i.e., Borentheria, Xenarthra, and

Afrotheria.

The EI model, in which the selective constraints were evaluated

on the basis of average contact energies between residues in

Table 2. Comparisons between various codon substitution models in the concatenating analysis of cpDNA-9.

Codon substitution modela Kb D‘‘c DAICc DBICc Sewab Tde
ŝs

ef
m̂m

eg h
âa

i

cpREV64-1-F-dG4r 62 {3180:3 6358.6 6351.2 (0.0) 0.977

LG-1-F-dG4r 62 {2912:8 5823.6 5816.1 (0.0) 0.973

JTT-1-F-dG4r 62 {2608:4 5214.8 5207.4 (0.0) 1.020

WAG-1-F-dG4r 62 {2501:2 5000.5 4993.0 (0.0) 1.148

cpREV10-1-F-dG4r 62 {1575:7 3149.3 3141.9 (0.0) 1.195

cpREV64-1-F-dG4s 62 {1504:2 3006.4 2999.0 (0.0) 0.505

LG-1-F-dG4s 62 {1321:4 2640.8 2633.4 (0.0) 0.496

WAG-1-F-dG4s 62 {1126:3 2250.5 2243.1 (0.0) 0.573

JTT-1-F-dG4s 62 {1046:0 2090.0 2082.6 (0.0) 0.519

cpREV10-1-F-dG4s 62 {284:0 566.0 558.6 (0.0) 0.591

KHG-2-F-dG4r 63 {1237:8 2475.7 2475.7 0.031 1.301

KHG-2-F-dG4s 63 0.0 0.0 0.0 0.290 0.575

No-Constraint-10-F-dG4r 71 {19392:6 38801.2 38860.7 (1.0) 0.000 0.040 2.541 1.830

Equal-Constraint-11-F-dG4r 72 {1355:6 2729.2 2796.1 0.021 0.424 0.292 2.053 1.178

EI-12-F-dG4r 73 {253:1 526.3 600.6 0.023 0.000 0.494 2.217 1.160

JTT-ML91+-12-F-dG4r 73 288.7 {557:3 {483:0 0.018 0.002 0.569 1.702 1.131

WAG-ML91+-12-F-dG4r 73 477.4 {934:7 {860:4 0.015 0.272 0.526 2.184 1.126

KHG-ML200-12-F-dG4r 73 562.9 {1105:8 {1031:5 0.039 0.000 0.325 1.610 1.122

LG-ML91+-12-F-dG4r 73 627.3 {1234:6 {1160:3 0.023 0.000 0.485 2.158 1.144

Equal-Constraint-11-F-dG4s 72 680.2 {1342:4 {1275:5 0.063 0.414 0.208 2.196 0.384

EI-12-F-dG4s 73 1935.2 {3850:4 {3776:0 0.060 0.000 0.431 2.307 0.390

JTT-ML91+-12-F-dG4s 73 2640.2 {5260:4 {5186:1 0.052 0.125 0.461 1.774 0.363

KHG-ML200-12-F-dG4s 73 2646.5 {5273:0 {5198:6 0.106 0.170 0.215 1.705 0.388

WAG-ML91+-12-F-dG4s 73 2827.2 {5634:4 {5560:1 0.048 0.313 0.405 2.349 0.359

LG-ML91+-12-F-dG4s 73 2956.6 {5893:1 {5818:8 0.064 0.201 0.364 2.369 0.370

LG-ML91+-11s-F-dG4s 72 2412.8 {4807:6 {4740:6 0.066 2.335 (0.0) 2.667 0.297

LG-ML91+-11-F-dG4s 72 2942.4 {5866:8 {5799:9 0.066 (0.0) 0.409 2.292 0.385

LG-ML91+-12-F 72 {1833:2 3684.4 3751.4 0.026 0.878 0.622 2.039

aThe prior probability of each category for the mechanistic codon models of ‘‘dG4s’’ is p(C1)~0:50, p(C2)~0:25, and p(C3)~p(C4)~0:125; equal probability is used in
other models.

bThe number of adjustable parameters.
cDifferences from the reference state; D‘~‘z200811:7, DAIC~({2‘z2K){401749:5, and DBIC~({2‘zK log 12507){402217:8.
dThe average of ew

ab over all amino acid pairs fa,bg; Sewab T:
1

190

X
a

X
bwa

ewab .
eThe value parenthesized means that the parameter is fixed at the value specified.
fThe scale parameter of a C distribution for the variation of mutation rate over time.
gThe ratio of double to single and of triple to double nucleotide change exchangeability; m̂m:m̂m½tc�½ag� .
hThe ratio of mean transitional to mean transversional exchangeability; m̂mtcjag=m̂m½tc�½ag� .
iThe shape parameter of a discrete gamma distribution for the variation of mutation rate or selective constraint over sites.
doi:10.1371/journal.pone.0028892.t002
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proteins [19], always show better performance than the Equal-

Constraint model but is always inferior to the other models, which

use the selective constraints estimated from the empirical amino

acid substitution frequency matrices, especially for the datasets

cpDNA-9 and mammalian-mtDNA including long branches. The

similar result was obtained in [19]. The selective constraint matrix

LG-ML91+ performs better on average than the WAG-ML91+,

JTT-ML91+, and KHG-ML200, although the differences of D‘
between them are small in comparison with the differences from

the EI. An unexpected fact is that the selective constraint matrix

KHG-ML200 estimated from the codon substitution rate matrix

KHG tends to be inferior to the other selective constraint matrices

estimated from the empirical amino acid substitution rate

matrices, LG-ML91+, WAG-ML91+, and LG-ML91+, although

it performs better except for nDNA than the EI.

In the concatenating analyses of multiple genes, it is assumed

that all genes have no difference in equilibrium codon frequencies,

nucleotide exchangeabilities, and the variations of mutation rate

and of selective constraint. These assumptions are not always

appropriate. Thus, the separating analyses of multiple genes have

been carried out. The DBIC of each gene for some models are

plotted against the maximum log-likelihood value for the best

model in Fig. 1 for all datasets. In all datasets, the mechanistic

codon substitution models show significantly lower DBIC than the

best amino acid substitution model converted into the codon

models, for almost all genes except some genes for which the

maximum log-likelihood values are large owing to short sequences.

The No-Constraint model is not shown for cpDNA-9 and

mammalian-mtDNA, because its DBIC values for them are too

large to show. For the phylogenetic trees of cpDNA-55 and

Table 3. Comparisons between various codon substitution models in the concatenating analysis of cpDNA-55.

Codon substitution modela Kb D‘‘c DAICc DBICc Sewab Tde
ŝs

ef
m̂m

eg h
âa

i

LG-1-F-dG4r 62 {15686:1 31370.2 31362.6 (0.0) 1.055

WAG-1-F-dG4r 62 {13111:9 26221.8 26214.3 (0.0) 1.094

cpREV10-1-F-dG4r 62 {11200:7 22399.4 22391.8 (0.0) 1.096

JTT-1-F-dG4r 62 {10457:8 20913.6 20906.1 (0.0) 1.092

cpREV64-1-F-dG4r 62 {6897:0 13792.0 13784.5 (0.0) 1.091

LG-1-F-dG4s 62 {11104:1 22206.2 22198.7 (0.0) 0.289

WAG-1-F-dG4s 62 {8713:6 17425.2 17417.7 (0.0) 0.300

cpREV10-1-F-dG4s 62 {6712:3 13422.7 13415.1 (0.0) 0.298

JTT-1-F-dG4s 62 {5820:8 11639.7 11632.1 (0.0) 0.299

cpREV64-1-F-dG4s 62 {1958:7 3915.4 3907.8 (0.0) 0.299

KHG-2-F-dG4r 63 {3161:2 6322.5 6322.5 0.068 1.073

KHG-2-F-dG4s 63 0.0 0.0 0.0 0.150 0.277

No-Constraint-10-F-dG4r 71 1705.9 {3395:8 {3335:3 (1.0) 0.000 0.018 3.557 1.055

Equal-Constraint-11-F-dG4r 72 26281.9 {52545:9 {52477:9 0.156 0.000 0.101 2.671 1.107

EI-12-F-dG4r 73 26941.5 {53863:0 {53787:5 0.143 0.000 0.107 2.732 1.100

JTT-ML91+-12-F-dG4r 73 27198.5 {54377:0 {54301:4 0.122 0.000 0.122 2.501 1.111

WAG-ML91+-12-F-dG4r 73 27378.4 {54736:7 {54661:2 0.125 0.000 0.115 2.690 1.100

LG-ML91+-12-F-dG4r 73 27664.8 {55309:7 {55234:1 0.142 0.000 0.112 2.707 1.109

KHG-ML200-12-F-dG4r 73 27683.4 {55346:8 {55271:2 0.163 0.000 0.099 2.479 1.106

Equal-Constraint-11-F-dG4s 72 34659.7 {69301:4 {69233:4 0.276 0.124 0.056 2.664 0.259

EI-12-F-dG4s 73 35716.3 {71412:7 {71337:1 0.235 0.103 0.071 2.727 0.247

KHG-ML200-12-F-dG4s 73 36243.5 {72467:0 {72391:4 0.251 0.116 0.058 2.477 0.285

JTT-ML91+-12-F-dG4s 73 36257.9 {72495:7 {72420:2 0.204 0.072 0.098 2.438 0.231

WAG-ML91+-12-F-dG4s 73 36362.6 {72705:2 {72629:6 0.222 0.109 0.074 2.670 0.234

LG-ML91+-12-F-dG4s 73 36583.3 {73146:6 {73071:1 0.233 0.105 0.073 2.701 0.256

LG-ML91+-11s-F-dG4s 72 36336.9 {72655:9 {72587:9 0.250 0.260 (0.0) 2.788 0.237

LG-ML91+-11-F-dG4s 72 36479.9 {72941:8 {72873:7 0.213 (0.0) 0.123 2.623 0.273

LG-ML91+-12-F 72 14390.7 {28763:5 {28695:5 0.135 0.000 0.182 2.569

aThe prior probability of each category for the ‘‘dG4s’’ is p(C1)~0:50, p(C2)~0:25, and p(C3)~p(C4)~0:125.
bThe number of adjustable parameters.
cDifferences from the reference state; D‘~‘z490663:8, DAIC~({2‘z2K){981453:6, and DBIC~({2‘zK log 14128){981929:6.
dThe average of ew

ab over all amino acid pairs fa,bg; Sewab T:
1

190

X
a

X
bwa

ewab .
eThe value parenthesized means that the parameter is fixed at the value specified.
fThe scale parameter of a C distribution for the variation of mutation rate over time.
gThe ratio of double to single and of triple to double nucleotide change exchangeability; m̂m:m̂m½tc�½ag� .
hThe ratio of mean transitional to mean transversional exchangeability; m̂mtcjag=m̂m½tc�½ag� .
iThe shape parameter of a discrete gamma distribution for the variation of mutation rate or selective constraint over sites.
doi:10.1371/journal.pone.0028892.t003
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human-mtDNA consisting of relatively short branches, the No-

Constraint model, i.e., a nucleotide substitution model, is better for

most of the genes than the amino acid substitution models

converted into the codon models, as also indicated by the

concatenating analyses. Even for those datasets, DBIC can be

further decreased by the mechanistic codon substitution models

including the the Equal-Constraint model. However, differences of

DBIC between the mechanistic substitution models with the

different selective constraints are small for those dataset in

comparison with the improvement from the amino acid

substitution models converted into the codon models. For the

phylogenetic trees of cpDNA-9 and mammalian-mtDNA consist-

ing of long branches, the differences between the Equal-Constraint

and the EI and between the EI and the best model with amino

acid dependent selective constraints are very significant, as

indicated by the concatenating analyses.

The mechanistic codon substitution model performs better for a

wide range of sequences from highly-homologous to highly-

diverged sequences than both nucleotide and amino acid

substitution models. This is because it takes into account both

mutational tendencies at the nucleotide level and selection at the

amino acid level.

Variable mutation rates versus variable selective
constraints over sites

Significance of rate variation over sites in proteins has been

demonstrated in nucleotide substitution models and amino acid

substitution models [32,33]. These results do not necessarily

indicate the variation of mutation rate over sites, because the

variation of selective constraint over sites in proteins can also cause

the variation of amino acid substitution rate over sites even under

a uniform mutation rate over sites. Here, we examine which model

better fits the heterogeneity of amino acid substitution rate over

sites.

The discrete gamma distribution with 4 categories has been

used to emulate both the variations of selective constraint and of

mutation rate over sites. The models with variable selective

constraints and with variable mutation rates are specified by dG4s

and dG4r, respectively. Tables 2, 3, 4 for the concatenating

analyses of genes consistently indicate that the codon substitution

Table 4. Comparisons between various codon substitution models in the concatenating analysis of mammalian-mtDNA.

Codon substitution modela Kb D‘‘c DAICc DBICc Sewab Tde
ŝs

ef
m̂m

eg h
âa

i

WAG-1-F-dG4r 62 {5227:0 10454.0 10454.0 (0.0) 0.786

LG-1-F-dG4r 62 {5154:9 10309.8 10309.8 (0.0) 0.771

JTT-1-F-dG4r 62 {3673:9 7347.7 7347.7 (0.0) 0.783

mtREV-1-F-dG4r 62 {1863:0 3725.9 3725.9 (0.0) 0.870

WAG-1-F-dG4s 62 {2662:6 5325.2 5325.2 (0.0) 0.327

LG-1-F-dG4s 62 {2628:1 5256.1 5256.1 (0.0) 0.314

JTT-1-F-dG4s 62 {1285:1 2570.2 2570.2 (0.0) 0.329

mtREV-1-F-dG4s 62 0.0 0.0 0.0 (0.0) 0.339

No-Constraint-10-F-dG4r 71 {63614:9 127247.9 127303.6 (1.0) 0.000 0.000 4.908 1.965

Equal-Constraint-11-F-dG4r 72 464.7 {909:4 {847:5 0.013 0.000 0.108 4.508 0.495

EI-12-F-dG4r 73 4336.4 {8650:8 {8582:7 0.007 0.000 0.271 4.697 0.928

KHG-ML200-12-F-dG4r 73 5340.3 {10658:5 {10590:4 0.022 0.000 0.088 3.238 0.480

JTT-ML91+-12-F-dG4r 73 5501.7 {10981:4 {10913:3 0.006 0.000 0.228 3.679 0.452

WAG-ML91+-12-F-dG4r 73 5728.6 {11435:1 {11367:0 0.006 0.000 0.206 5.614 0.492

LG-ML91+-12-F-dG4r 73 6315.1 {12608:2 {12540:0 0.009 0.000 0.147 5.921 0.515

Equal-Constraint-11-F-dG4s 72 6961.9 {13903:8 {13841:9 0.036 1.313 0.031 4.984 0.269

EI-12-F-dG4s 73 10402.4 {20782:8 {20714:6 0.024 1.137 0.124 5.426 0.267

KHG-ML200-12-F-dG4s 73 11621.0 {23219:9 {23151:8 0.063 1.119 0.039 3.658 0.306

JTT-ML91+-12-F-dG4s 73 11698.3 {23374:5 {23306:4 0.022 1.637 0.091 4.189 0.259

WAG-ML91+-12-F-dG4s 73 11997.4 {23972:8 {23904:6 0.020 1.686 0.092 6.588 0.259

LG-ML91+-12-F-dG4s 73 12532.5 {25042:9 {24974:8 0.028 1.826 0.065 7.158 0.262

LG-ML91+-11-F-dG4s 72 12113.1 {24206:3 {24144:4 0.035 (0.0) 0.128 6.009 0.290

LG-ML91+-11s-F-dG4s 72 12268.3 {24516:5 {24454:6 0.028 3.066 (0.0) 7.600 0.252

LG-ML91+-12-F 72 {4803:5 9627.1 9689.0 0.011 3.713 0.196 5.477

aThe prior probability of each category for the ‘‘dG4s’’ is p(C1)~0:50, p(C2)~0:25, and p(C3)~p(C4)~0:125.
bThe number of adjustable parameters.
cDifferences from the reference state; D‘~‘z343200:7, DAIC~({2‘z2K){686525:4, and DBIC~({2‘zK log 3618){686909:5.
dThe average of ew

ab over all amino acid pairs fa,bg; Sewab T:
1

190

X
a

X
bwa

ewab .
eThe value parenthesized means that the parameter is fixed at the value specified.
fThe scale parameter of a C distribution for the variation of mutation rate over time.
gThe ratio of double to single and of triple to double nucleotide change exchangeability; m̂m:m̂m½tc�½ag� .
hThe ratio of mean transitional to mean transversional exchangeability; m̂mtcjag=m̂m½tc�½ag� .
iThe shape parameter of a discrete gamma distribution for the variation of mutation rate or selective constraint over sites.
doi:10.1371/journal.pone.0028892.t004
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models with the variation of selective constraint (dG4s) show

significantly lower DAIC and DBIC than the corresponding

models with the variation of mutation rate (dG4r) over sites for the

datasets cpDNA-9, cpDNA-55, and mammalian-mtDNA. The

comparisons of DBIC of each gene between those two types of the

models are shown in Fig. 2 for all datasets. These figures also show

that the variation of selective constraint is a statistically better

model than the variation of mutation rate at least for cpDNA-9,

cpDNA-55 and mammalian-mtDNA. This is reasonable because a

mutation rate may not significantly differ among sites in a gene but

selective constraints originating in the tertiary structure and the

function of a protein should vary among sites in a protein.

Generally speaking, selective constraints on amino acid replace-

ments are stronger in a protein core than on protein surface [54].

However, in both the concatenating analyses and the separating

analyses of genes, the DAIC and the DBIC values for the models

with the variation of selective constraint are not smaller for the

nDNA than those for the models with the variation of mutation

rate. For the human-mtDNA consisting of highly-polymorphic

intraspecific mitochondrial genes, the mechanistic codon models

with the variation of selective constraints attain slightly lower

DAIC and DBIC than the corresponding models with rate

variation, although the differences of DBIC between the two

models are insignificant in the separating analyses of the genes.

The phylogenetic trees of the datasets human-mtDNA and nDNA

consist of extremely short branches only, in which nonsynonymous

substitutions insignificantly occur under strong selective con-

straints. In such a phylogenetic tree, it is hard to estimate correctly

the variation of selective constraint over sites as indicated by the

high performance of the Equal-Constraint model. This would be

the reason why the differences of DBIC between the mechanistic

codon models of the dG4r and the dG4s are insignificant in the

separating analyses of genes for the human-mtDNA. On the other

hand, the present result for the nDNA, which consists of 10 genes

that are not necessarily closely-located in the same chromosome,

may indicate the possibility of rate variation over sites.

Site dependencies of selective constraints
Selective constraints against amino acid replacements at each

site must reflect both structural and functional constraints on a

Table 5. Comparisons between various codon substitution models in the concatenating analysis of human-mtDNA.

Codon substitution modela Kb D‘‘c DAICc DBICc Sewab Tde
ŝs

ef
m̂m

eg h
âa

i

LG-1-F-dG4r 62 {42:4 84.8 84.8 (0.0) 0.338

WAG-1-F-dG4r 62 {40:1 80.1 80.1 (0.0) 0.343

JTT-1-F-dG4r 62 5.9 {11:8 {11:8 (0.0) 0.345

mtREV-1-F-dG4r 62 7.7 {15:3 {15:3 (0.0) 0.331

LG-1-F-dG4s 62 {49:2 98.3 98.3 (0.0) 0.080

WAG-1-F-dG4s 62 {46:2 92.5 92.5 (0.0) 0.079

JTT-1-F-dG4s 62 {1:8 3.7 3.7 (0.0) 0.091

mtREV-1-F-dG4s 62 0.0 0.0 0.0 (0.0) 0.085

No-Constraint-10-F-dG4r 71 315.1 {612:3 {556:6 (1.0) 0.000 0.000 47.760 0.465

Equal-Constraint-11-F-dG4r 72 515.6 {1011:2 {949:4 0.092 0.066 0.000 39.685 0.612

EI-12-F-dG4r 73 525.8 {1029:7 {961:7 0.076 0.000 0.000 36.208 0.620

KHG-ML200-12-F-dG4r 73 530.8 {1039:5 {971:5 0.110 0.000 0.000 31.182 0.648

WAG-ML91+-12-F-dG4r 73 535.5 {1049:1 {981:1 0.069 0.000 0.000 41.404 0.635

LG-ML91+-12-F-dG4r 73 535.7 {1049:4 {981:4 0.089 0.002 0.000 42.787 0.627

JTT-ML91+-12-F-dG4r 73 541.0 {1059:9 {991:9 0.051 0.000 0.000 32.733 0.646

Equal-Constraint-11-F-dG4s 72 517.4 {1014:7 {952:9 0.108 0.000 0.000 36.267 0.106

EI-12-F-dG4s 73 528.3 {1034:7 {966:7 0.079 0.000 0.000 34.994 0.123

KHG-ML200-12-F-dG4s 73 536.6 {1051:2 {983:2 0.106 0.000 0.000 30.457 0.227

LG-ML91+-12-F-dG4s 73 538.4 {1054:7 {986:7 0.078 0.000 0.000 39.024 0.233

WAG-ML91+-12-F-dG4s 73 539.3 {1056:7 {988:7 0.059 0.000 0.000 38.794 0.207

JTT-ML91+-12-F-dG4s 73 542.6 {1063:2 {995:2 0.049 0.000 0.000 32.064 0.168

JTT-ML91+-11-F-dG4s 72 542.6 {1065:2 {1003:4 0.049 (0.0) 0.000 32.067 0.168

JTT-ML91+-11s-F-dG4s 72 542.6 {1065:2 {1003:4 0.049 0.000 (0.0) 32.067 0.168

JTT-ML91+-12-F 72 522.3 {1024:6 {962:7 0.052 0.000 0.000 32.207

aThe prior probability of each category for the ‘‘dG4s’’ is p(C1)~0:75, p(C2)~0:125, and p(C3)~p(C4)~0:0625.
bThe number of adjustable parameters.
cDifferences from the reference state; D‘~‘z17283:0, DAIC~({2‘z2K){34690:0, and DBIC~({2‘zK log 3579){35073:3.
dThe average of ew

ab over all amino acid pairs fa,bg; Sewab T:
1

190

X
a

X
bwa

ewab .
eThe value parenthesized means that the parameter is fixed at the value specified.
fThe scale parameter of a C distribution for the variation of mutation rate over time.
gThe ratio of double to single and of triple to double nucleotide change exchangeability; m̂m:m̂m½tc�½ag� .
hThe ratio of mean transitional to mean transversional exchangeability; m̂mtcjag=m̂m½tc�½ag� .
iThe shape parameter of a discrete gamma distribution for the variation of mutation rate or selective constraint over sites.
doi:10.1371/journal.pone.0028892.t005
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residue type at each site, which are required for a protein to fold

into a unique native structure and to properly function, and vary

among residue sites in a protein. Here a simple analysis of site

dependencies of selective constraints has been performed to

ascertain the correlation between selective constraints and

structural constrains at each site.

Site dependencies of selective constraints are evaluated [40] as a

posterior mean of Sewi,abT(:
P

a

P
bwa ewi,ab=190) over categories

i for each site. Residue sites are categorized by the number of van

der Waals contacts with surrounding non-solvent atoms in a

protein structure, which are supposed to reflect the strength of

structural constraints; neighboring residues along a polypeptide

chain are not counted. Then, the posterior mean of Sewi,abT are

averaged over sites in each residue category and its dependence

on the category is examined. In Fig. 3, the site dependencies of

selective constrains are shown for the photosystem II CP47

chloroplast protein (psbB gene) and for the cytochrome c

oxidase subunit 1 mitochondrial protein (COX1 gene). The van

der Waals contacts were evaluated for the psbB in the 38-meric

state of the photosystem II protein complex and for the COX1

in the biological 26-meric state of bovine heart cytochrome C

oxidase in the fully reduced state; the protein coordinates 3ARC

and 2EIJ in the PDB database were used. The posterior mean of

selective constrains for each site was calculated in the LG-

ML91+-12-F-dG4s for the concatenated sequences of the

datasets cpDNA-9 and mammalian-mtDNA. It is clear that

the selective constraints tend to be stronger at residues

surrounded by more atoms, indicating that they reflect

structural constraints at each residue site in a protein. Here

we have taken account of purifying selection only, but positive

selection can be also examined [29] in terms of exp wab (fixation

rate) at each site.

Table 6. Comparisons between various codon substitution models in the concatenating analysis of nDNA.

Codon substitution modela Kb D‘‘c DAICc DBICc Sewab Tde
ŝs

ef
m̂m

eg h
âa

i

LG-1-F-dG4r 62 {56:9 111.7 106.7 (0.0) 0.429

WAG-1-F-dG4r 62 {55:8 109.6 104.6 (0.0) 0.431

JTT-1-F-dG4r 62 {42:7 83.3 78.3 (0.0) 0.434

LG-1-F-dG4s 62 {82:5 163.1 158.1 (0.0) 0.102

WAG-1-F-dG4s 62 {81:0 160.1 155.0 (0.0) 0.103

JTT-1-F-dG4s 62 {68:6 135.3 130.3 (0.0) 0.110

KHG-2-F-dG4r 63 20.5 {41:1 {41:1 0.082 0.472

KHG-2-F-dG4s 63 0.0 0.0 0.0 0.214 0.118

No-Constraint-3-F-dG4r 64 {92:9 187.9 192.9 (1.0) 0.000 0.000 4.368 0.499

Equal-Constraint-4-F-dG4r 65 137.1 {270:3 {260:2 0.083 0.000 0.020 2.638 0.465

KHG-ML200-5-F-dG4r 66 143.2 {280:4 {265:4 0.085 0.000 0.018 2.500 0.461

EI-5-F-dG4r 66 144.6 {283:2 {268:1 0.061 0.000 0.026 2.675 0.458

LG-ML91+-5-F-dG4r 66 146.6 {287:1 {272:1 0.065 0.000 0.025 2.756 0.456

JTT-ML91+-5-F-dG4r 66 147.3 {288:5 {273:5 0.050 0.000 0.027 2.515 0.463

WAG-ML91+-5-F-dG4r 66 147.7 {289:3 {274:3 0.053 0.000 0.025 2.737 0.459

Equal-Constraint-4-F-dG4s 65 119.4 {234:9 {224:9 0.092 0.003 0.032 2.470 0.109

KHG-ML200-5-F-dG4s 66 124.4 {242:7 {227:7 0.080 0.000 0.039 2.333 0.157

EI-5-F-dG4s 66 125.9 {245:7 {230:7 0.060 0.000 0.049 2.450 0.152

LG-ML91+-5-F-dG4s 66 125.9 {245:7 {230:7 0.063 0.000 0.050 2.466 0.172

JTT-ML91+-5-F-dG4s 66 128.0 {250:1 {235:0 0.051 0.000 0.053 2.344 0.133

WAG-ML91+-5-F-dG4s 66 128.4 {250:7 {235:7 0.056 0.000 0.049 2.503 0.127

WAG-ML91+-4s-F-dG4r 65 146.1 {288:3 {278:2 0.055 0.016 (0.0) 2.755 0.449

WAG-ML91+-4-F-dG4r 65 147.7 {291:3 {281:3 0.053 (0.0) 0.025 2.737 0.459

WAG-ML91+-4s-F-dG4s 65 127.5 {250:9 {240:9 0.057 0.079 (0.0) 2.572 0.133

WAG-ML91+-4-F-dG4s 65 128.4 {252:8 {242:7 0.056 (0.0) 0.049 2.507 0.129

WAG-ML91+-5-F 65 109.7 {215:4 {205:4 0.055 0.001 0.059 2.535

aIn the models specified with the suffix ‘‘-3-’’, ‘‘-4-’’, ‘‘-4s-’’ or ‘‘-5-’’, three, four or five parameters are optimized with f mut j ~0:25 and
mag=mtcjag~mta=m½tc�½ag�~mtg=m½tc�½ag�~mca=m½tc�½ag�~1:0. The prior probability of each category for the ‘‘dG4s’’ is p(C1)~0:75, p(C2)~0:125, and
p(C3)~p(C4)~0:0625.

bThe number of adjustable parameters.
cDifferences from the reference state; D‘~‘z6739:3, DAIC~({2‘z2K){13604:5, and DBIC~({2‘zK log 1112){13920:4.
dThe average of ew

ab over all amino acid pairs fa,bg; Sewab T:
1

190

X
a

X
bwa

ewab .
eThe value parenthesized means that the parameter is fixed at the value specified.
fThe scale parameter of a C distribution for the variation of mutation rate over time.
gThe ratio of double to single and of triple to double nucleotide change exchangeability; m̂m:m̂m½tc�½ag� .
hThe ratio of mean transitional to mean transversional exchangeability; m̂mtcjag=m̂m½tc�½ag� .
iThe shape parameter of a discrete gamma distribution for the variation of mutation rate or selective constraint over sites.
doi:10.1371/journal.pone.0028892.t006
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Estimates of branch lengths under different models
The correct estimation of branch length is critical for the

estimations of phylogeny and divergence times. It is known that

branch-length estimation is significantly influenced by model

selection. Yang et al. [33] found that branch lengths are severely

underestimated by nucleotide substitution models in which rate

variation over site is ignored. Also they found that simpler and

worse models tend to underestimate branch lengths more severely,

and such a bias is more serious for longer branches.

In Fig. 4, branch lengths estimated by the models with a

uniform substitution rate, with the variation of selective constraint,

and with the variation of mutation rate over sites are plotted

against those estimated by the model with the variation of selective

constraint over sites. The dotted lines in these figures are ones

connecting the origin and the point of the longest branch on the

abscissa. Assuming the variation of mutation rate or selective

constraint leads to longer estimates of branch lengths than the

uniform substitution rate over sites. However, the estimates of

branch lengths are significantly different between the schemes of

variable mutation rates and of variable selective constraints over

sites, and assuming the variation of mutation rate estimates branch

lengths much longer for all datasets than the variation of selective

constraint.

Branch lengths estimated by the models with the variation of

mutation rate (dG4r) and with a uniform substitution rate are both

roughly proportional to those shown on the abscissa, i.e., those

estimated by the model with the variation of selective constraint

(dG4s). However, as pointed out by Yang et al. [33], a systematic

bias in the estimation of branch length is shown; the ratio of the

branch length estimate of a worse model to that of the best model

tends to be smaller for longer branches irrespective of overesti-

mation or underestimation. For cpDNA-9, cpDNA-55 and

mammalian-mtDNA, for which the dG4s is the best model, plus

marks for a uniform substitution rate and cross marks for the dG4r

are plotted in a concave pattern, although the concave pattern for

dG4r is not clear in cpDNA-55. For nDNA, which the dG4r fits

better than the dG4s, cross marks for the dG4r are plotted in a

slightly convex pattern. This systematic bias indicates that the

worse models tend to underestimate the frequencies of multiple

substitutions in long branches in comparison with short branches.

When the different types of models are compared with each

other, the correlation of branch lengths between the models is not

always good. In Fig. 5, the estimates of branch lengths for cpDNA-

9 and mammalian-mtDNA in the Equal-constraint model and in

the amino acid substitution model converted into the codon

models are plotted against those in the best model. These estimates

for cpDNA-9 are roughly proportional to those in the best model,

although there is a systematic bias. However, the correlation of

branch lengths between the mtREV-1-F-dG4s and the best model

for mammalian-mtDNA is not as good as those between the

models for cpDNA-9.

In the result, except for the datasets consisting of highly-

homologous sequences, the variation of selective constraint is a

better model than the variation of mutation rate, and assuming the

variation of mutation rate leads to the overestimation of branch

length. Even for highly-homologous sequence families, the model

with the variation of selective constraint may not be too bad,

because the differences of AIC and BIC between the models with

variable mutation rates and with variable selective constraints are

not significantly large, and the branch lengths estimated by those

models are almost proportional to each other.

Multiple nucleotide changes in infinitesimal time
Codon substitutions requiring multiple nucleotide changes can

be caused by either multiple steps of single nucleotide changes or

single steps of multiple nucleotide changes. In the present

mechanistic codon substitution model, codon mutations by

multiple nucleotide changes in infinitesimal time are taken into

account. The mechanistic codon substitution models with the

various selective constraint matrices all indicate m(:m½tc�½ag�)w0
for the datasets cpDNA-9, cpDNA-55, and mammalian-mtDNA,

which include long branches. The DAIC and DBIC values

consistently indicate that the model LG-ML91+-12-F-dG4s, in

which multiple nucleotide changes are allowed, fits these datasets

better than the model LG-ML91+-11s-F-dG4s, in which multiple

nucleotide changes are disallowed. Also, the LRTs for LG-

ML91+-11s-F-dG4s nested by LG-ML91+-12-F-dG4s reject the

assumption of single nucleotide changes with p{value%0:00001
for these datasets; see Tables 2, 3, 4. This result is consistent with a

report [19] that the mechanistic codon model could not well fit

observed substitution frequency data unless multiple nucleotide

changes in infinitesimal time are allowed.

On the other hand, the parameter for multiple nucleotide

changes is not significant for the datasets human-mtDNA and

nDNA that consist of closely-related or highly-conserved sequenc-

es, and whose phylogenetic trees consist of short branches only.

This fact indicates that multiple nucleotide changes rarely occur in

short evolutionary periods, and multiple nucleotide changes

detected in relatively long branches of cpDNA-9, cpDNA-55,

and mammalian-mtDNA may result from compensatory substitu-

tions that shortly succeed single nucleotide substitutions, or other

mechanisms. A possibility of successive single compensatory

substitutions for multiple nucleotide changes was pointed out by

Bazykin et al. [26]. Whatever results in multiple nucleotide

changes in long evolutionary periods, the present method, in

which multiple nucleotide changes in infinitesimal time are

allowed, for codon substitutions is effective to improve the

likelihood of a phylogenetic tree with long branches.

Variation of mutation rate over time
The site-specific variation of amino acid substitution rate over

time was first discussed as a covarion model by Fitch and

Markowitz [35], and recently its significance have been indicated

again for rRNA [36] and cytochrome b [37]. Although amino acid

substitutions may occur in a concerted manner with other

interacting sites, causing the variation of selective constraint over

time, here we has examined the variation of mutation rate over

time at each site.

The present model includes a parameter s for the variation of

mutation rate over time. The scale factor s~0 for a C distribution

Figure 1. Comparisons of DBIC of each gene in each dataset among models. DBIC of each gene in cpDNA-9 (A), cpDNA-55 (B),
mammalian-mtDNA (C), human-mtDNA (D), and nDNA (E) for each specified model is plotted against its log-likelihood value for the best model in the
concatenating analysis of the genes. The horizontal dotted line of DBIC ~0 shows the reference model for each dataset. The best model is shown by
the lowest dot-dashed line. The lower dotted line in each figure shows the data points for the EI model. The lower and the upper broken lines show
the Equal-Constraint and the No-Constraint models, respectively. The No-Constraint model is not shown for cpDNA-9 and mammalian-mtDNA,
because its DBIC values are too large. In the models specified with the suffix ‘‘-5-’’ for human-mtDNA and nDNA, five parameters were optimized
with f mut j ~0:25 and mag=mtcjag~mta=m½tc�½ag�~mtg=m½tc�½ag�~mca=m½tc�½ag�~1:0.
doi:10.1371/journal.pone.0028892.g001
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means no variation of mutation rate over time. Because the

present simple approximation works by replacing the substitution

matrix S by its expected value E(S) under rate variations, the

parameter s will not only reflect the variation of mutation rate

over time but also be affected by the variations of selective

constraints over time and of substitution rate over sites, especially

if both the variations of mutation rate and of selective constraint

over sites are not taken into account; it tends to take larger values

in models assuming a uniform rate over sites than variable

mutation rates or selective constraints. Also, if only single

nucleotide changes in infinitesimal time are assumed, i.e.,

m(:m½tc�½ag�)~0, this parameter (s) will be estimated to be larger

to increase the probability of multiple steps of substitutions. The

reverse is also true.

The mechanistic codon substitution models specified with a

suffix dG4s, in which selective constraints are variable across sites,

all indicate ŝsw0 for the datasets cpDNA-9, cpDNA-55, and

mammalian-mtDNA, which include long branches. The DAIC
and DBIC values indicate that the model LG-ML91+-12-F-dG4s

including s as a parameter fits these datasets better than the model

LG-ML91+-11-F-dG4s assuming s~0. Also, the LRTs for LG-

ML91+-11-F-dG4s nested by LG-ML91+-12-F-dG4s reject a

constant mutation rate over time with p{value%0:00001 for

all cpDNA-9, cpDNA-55, and mammalian-mtDNA; see Tables 2,

3, 4. Therefore, rate variation over time should not be ignored for

highly-diverged sequences. The ML estimate of s for mammalian-

mtDNA is larger than 1, while it is less than 0:5 for the other two

datasets. The variation of mutation rate among lineages in primate

mtDNAs has been indicated [6,55].

As shown in Tables 2, 3, 4, 5, 6, when mutation rates are

assumed to be variable across sites, i.e., in the mechanistic codon

substitution models specified with a suffix dG4r, the parameter s
has been estimated to be almost equal to zero for all the datasets,

even for the datasets cpDNA-9, cpDNA-55, and mammalian-

mtDNA, for which the models assuming variable selective

constraints indicate ŝsw0. Variable mutation rates across sites

are taken into account in such a way that each site has multiple

mutation rates with certain probabilities given by a discrete

gamma distribution. Thus, in the present approximation it would

be hard to distinguish the variation of mutation rate over time at

each site from that over sites in these models.

Transition/transversion bias
One of the advantages in mechanistic codon substitution models

over amino acid substitution models is that mutational tendencies

at the nucleotide level can be estimated. The estimation of

mutational tendencies by mechanistic codon substitution models

must be more precise than by nucleotide substitution models

Figure 2. Comparison of DBIC of each gene in each dataset between the models with variable mutation rates and with variable
selective constraints over sites. DBIC of each gene in cpDNA-9 (A), cpDNA-55 (B), mammalian-mtDNA (C), human-mtDNA (D), and nDNA (E) is
compared between the models with the variation of mutation rate (dG4r) and with the variation of selection constraint (dG4s) over sites. The dotted
line shows the line of equal values between the ordinate and the abscissa. In the models specified with the suffix ‘‘-5-’’ for human-mtDNA, five
parameters were optimized with f mut j ~0:25 and mag=mtcjag~mta=m½tc�½ag�~mtg=m½tc�½ag�~mca=m½tc�½ag�~1:0.
doi:10.1371/journal.pone.0028892.g002

Figure 3. Site dependences of selective constraints. Site dependences of selective constraints in the photosystem II CP47 protein (psbB gene)
(A) and cytochrome c oxidase subunit 1 mitochondrial protein (COX1 gene) (B) are shown. Residue sites are categorized by the number of van der
Waals contacts with surrounding non-solvent atoms in the protein structure; neighboring residues along a polypeptide chain are not counted. The
degree of van der Waals contact for an atom pair, which is separated by r and whose van der Waals distance is equal to rm, is defined as
2(rm=r)6{(rm=r)12 for rm=rv1 and 1 for rm=r§1. The van der Waals contacts are evaluated for the psbB in the 38-meric state of the photosystem II
complex from Thermosynechococcus vulcanus, and for the COX1 in the biological 26-meric state of bovine heart cytochrome C oxidase in the fully
reduced state; the protein coordinates 3ARC and 2EIJ in the PDB database were used. Posterior mean of selective constrains (Sewi,ab T) averaged over
sites in each residue category is shown in the ordinate. The posterior mean of selective constrains were calculated by the LG-ML91+-12-F-dG4s for the
concatenated sequences of the datasets cpDNA-9 and mammalian-mtDNA.
doi:10.1371/journal.pone.0028892.g003
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applied to all codon positions, because selection at the amino acid

level is taken into account.

Transitional substitutions have been noted to occur more

frequently than transversions [56,57], and transition/transversion

rate bias is more pronounced in animal mitochondrial DNAs than

in nuclear or chloroplast DNAs [58]. Different measures have

been used for transition to transversion bias [55,58,59]. One is the

ratio of transitional differences to transversional differences

between two sequences. Another is the ratio of the total

transitional to the total transversional rate. Also, the ratio of

transitional to transversional substitution exchangeability has been

used. Here, the ratio of the mean transitional to the mean

transversional exchangeability is used, because each type of

transitional and transversional mutations occurs with a different

exchangeability. The ratio (m̂mtcjag=m̂m½tc�½ag�) of the mean transitional

to the mean transversional exchangeability is listed in Tables 2, 3,

4, 5, 6 for all datasets. The values of m̂mtcjag=m̂m½tc�½ag� in the

mechanistic codon substitution models with the various estimates

of selective constraints fall into a narrow range for each dataset.

They range from 3.7 to 7.2 for mammal-mtDNA, and from 30.5

to 39.0 for human-mtDNA. On the other hand, they fall into the

range of much smaller values from 1.7 to 2.4 for cpDNA-9, from

2.4 to 2.7 for cpDNA-55, and from 2.3 to 2.8 for nDNA. The ratio

of the mean transitional to the mean transversional exchangeabil-

ity is estimated to be almost 10–20 times larger for human

mitochondrial DNA but only 2–3 times larger for mammalian

mitochondrial DNA than for nuclear and chloroplast DNAs.

Adachi and Hasegawa [6] reported that the transitional mutation

rate and the ratio of transitional to transversional mutation rate at

four-fold degenerate sites of mtDNA were higher by about two

times in humans than in apes. On the other hand, Yang and

Yoder [55] showed that the maximum likelihood estimate of the

ratio of transitional to transversional substitution rate changes with

the species included in the analysis, and was always larger at low

than at high sequence divergence. It was suggested [55] that the

variable rates of transitional and transversional mutations among

evolutionary lineages might cause such a sample dependence.

Conclusions
In the present mechanistic codon substitution model, single

nucleotide mutations are modeled by the GTR model and

multiple nucleotide mutations in infinitesimal time are assumed

to occur independently at each position of codon, and selective

constraints on amino acids are approximated by a linear function

of the empirical selective constraints. It has been shown that even

the Equal-Constraint model performs far better for a wide range of

sequences from highly-homologous to highly-diverged sequences

than both the No-Constraint model and the amino acid

Figure 4. Comparisons of branch lengths estimated by the models with a uniform rate, variable mutation rates, and variable
selective constraints over sites. Branch lengths estimated for the phylogenetic trees of cpDNA-9 (A), cpDNA-55 (B), mammalian-mtDNA (C),
human-mtDNA (D), and nDNA (E) are compared among models. The abscissa shows the branch lengths estimated by the model with the variation of
selection constraint (dG4s). The LG-ML91+-12-F-dG4s is the best model except for human-mtDNA and nDNA. The best model is JTT-ML91+-12-F-dG4s
for human-mtDNA and WAG-ML91+-5-F-dG4r for nDNA. The models with the variation of mutation rate (dG4r) and with a uniform substitution rate
over sites are shown by cross and plus marks, respectively. The model with the variation of selection constraint (dG4s) is shown by the middle dotted
line. The dotted lines in each figure are ones connecting the origin and the respective estimates for the longest branch on the abscissa. In the models
specified with the suffix ‘ ‘-5-’ ’ for human-mtDNA and nDNA, five parameters were optimized with f mut j ~0:25 and
mag=mtcjag~mta=m½tc�½ag�~mtg=m½tc�½ag�~mca=m½tc�½ag�~1:0.
doi:10.1371/journal.pone.0028892.g004

Figure 5. The estimates of branch lengths for the phylogenetic tree of each dataset under the different types of models. Branch
lengths estimated for cpDNA-9 (A) and mammalian-mtDNA (B) are compared among models. The abscissa shows the branch lengths estimated by
the best model with the variation of selective constraint, LG-ML91+-12-F-dG4s. The dotted line in each figure shows branch lengths estimated by the
best model shown on the abscissa.
doi:10.1371/journal.pone.0028892.g005
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substitution models converted into the codon substitution models.

The No-Constraint model is a nucleotide substitution model

extended to allow multiple nucleotide changes in infinitesimal

time. On the other hand, the codon substitution model converted

from the amino acid substitution model is extended here in such a

way that the special case of w0~{? is exactly equivalent to the

amino acid substitution model [17]. Thus, the performance of the

Equal-Constraint model indicates that codon substitution models

are superior to nucleotide and amino acid substitution models.

The present analyses have also shown that the mechanistic

models with the amino acid dependent selective constraints do not

only perform far better especially for phylogenetic trees consisting

of relatively long branches than the Equal-Constraint model, but

better even for phylogenetic trees consisting of short branches.

This result indicates the superiority of the selective constraint

matrices (w estimate
ab ) estimated by maximizing the respective

likelihoods of the observed substitution frequency matrices of 1-

PAM [19]. In long branches, nonsynonymous substitutions

increase, and therefore the proper evaluation of selective

constraints on amino acids becomes critical. On the other hand,

in short branches in which nonsynonymous substitutions are

insignificant, the proper evaluation of mutational tendencies at the

nucleotide level becomes important. The former is the situation in

which amino acid substitution models perform better than

nucleotide substitution models. Inversely, the latter is the situation

in which nucleotide substitution models perform better, although

they are not superior for slow-evolving proteins, because there is a

possibility that synonymous substitutions are saturated even in

short branches; the dataset nDNA is an example of such a case.

However, mutational tendencies at the nucleotide level and the

strength of selective constraints cannot be tailored to each gene in

the amino acid substitution models, and selection on amino acid

replacements cannot be taken into account in the nucleotide

substitution models. Thus, mechanistic codon models that can

tailor both mutational tendencies and the strength of selective

constraints are superior to both nucleotide and amino acid

substitution models.

It was pointed out [18] that codon substitution models require

intensive computation to recalculate eigenvalues and eigenvectors

of a 64-dimensional matrix. Simultaneous optimizations of a tree

topology and model parameters may be hard. However, model

parameters may be fixed at the values estimated for one of the

reasonable trees, because the optimum values of model parameters

do not severely depend on a tree topology, unless tree topologies

are unrealistic. On the other hand, the mechanistic codon

substitution model can provide much information on mutational

tendencies and the strength of selective constraints. In addition,

the present model enables us to distinguish the variations of

mutation rate and of selective constraint over sites. The variation

of mutation rate over time can also be discussed.

The present analyses show that multiple nucleotide changes in

infinitesimal time are statistically significant in long branches as

well as the variation of mutation rate over time. It has been also

shown that the variation of amino acid substitution rate over sites

results from variable selective constraints rather than variable

mutation rates at least in the phylogenetic trees of cpDNA-9,

cpDNA-55, and mammalian-mtDNA including long branches.

Branch lengths will be overestimated for these datasets if the

variation of mutation rate over sites is assumed instead of the

variation of selective constraint. The capability of the mechanistic

codon substitution models to extract biological knowledge from

protein-coding sequences makes them superior to both nucleotide

and amino acid substitution models.
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