
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Properties of contact matrices

induced by pairwise interactions in proteins

Sanzo Miyazawa1 and Akira R. Kinjo2

1 miyazawa@smlab.sci.gunma-u.ac.jp

Graduate School of Engineering, Gunma University, Japan

2akinjo@protein.osaka-u.ac.jp

Institute for Protein Reseach, Osaka University, Suita, Japan

presented at

2009 annual meeting of Biophysical Society in Boston

(February 28 - March 4, 2009)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

ABSTRACT

The properties of contact matrices (C matrices) needed for native proteins to be the lowest-energy conformations are

considered in relation to a contact energy matrix (E matrix). The total conformational energy is assumed to consist

of pairwise interaction energies between atoms or residues, each of which is expressed as a product of a conformation-

dependent function (an element of a C matrix) and a sequence-dependent energy parameter (an element of a E

matrix). Such pairwise interactions in proteins force native C matrices to be in a relationship as if the interactions

are a Go-like potential [N. Go, Annu. Rev. Biophys. Bioeng. 12. 183 (1983)] for the native C matrix, because

the lowest bound of the total energy function is equal to the total energy of the native conformation interacting in

a Go-like pairwise potential. This relationship between C and E matrices corresponds to (a) a parallel relationship

between the eigenvectors of the C and E matrices and a linear relationship between their eigenvalues, and (b) a

parallel relationship between a contact number vector and the principal eigenvectors of the C and E matrices; the E

matrix is eigen-decomposed with an additional constant term, which corresponds to a threshold of contact energy that

approximately separates native contacts from non-native ones. These relationships are confirmed in 182 representatives

from each family of the SCOP database by examining inner products between the principal eigenvector of the C matrix,

that of the E matrix evaluated with a statistical contact potential, and a contact number vector. In addition, the

spectral representation of C andE matrices reveals that pairwise residue-residue interactions, which depends only on the

types of interacting amino acids but not on other residues in a protein, are insufficient and other interactions including

residue connectivities and steric hindrance are needed to make native structures unique lowest-energy conformations.

Reference: Phys.Rev.E, 77:051910, 2008.
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1. INTRODUCTION

There are many studies of reconstructing three dimensional structures from one dimensional information such

as contact numbers and the principal eigenvector of a contact matrix.

Why the principal eigenvector of a contact matrix and a contact number vector contain significant information

on protein structures ?

To answer this question, we consider what properties of a contact matrix are induced by pairwise contact

interactions for native structures to be the lowest-energy conformations.
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2. THEORY

Basic assumptions

The total conformational energy: the sum of pairwise interactions

Ec(C, S) =
1

2

N∑
i

N∑
j

Eij(S)∆ij(C) (1)

=
1

2

N∑
i

N∑
j

δEij(S)∆ij(C) + ε0Nc(C) (2)

where i and j indicate ith and jth atom or residue, N means their total number, and

Eij(S) Sequence (S-) dependent contact energy (E matrix) between i and j

δEij(S) ≡ Eij(S)− ε0 Contact energy relative to ε0

0 ≤ ∆ij(C) ≤ 1 Conformation (C-) dependent factor representing the degree of contact between i and j

ni(C) =
∑N

j ∆ij(C) Contact number of the ith atom or residue

Nc(C) ≡ 1
2

∑
i ni(C) The total number of contacts
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Lower bounds of the total contact energy
are achieved by Go-like potentials.

1. Ec(C, S) ≥ − 1

2
‖δ~E(S)‖‖~∆(C)‖ + ε0Nc(C) (3)

The equality is achieved iff δEij(S) = ε∆ij(C) with ε < 0 and ∆ij(C) = 1 or 0. (4)

2. Ec(C, S) ≥ 1

2

∑
i

∑
j

δEij(S)∆ij(Cmin) + ε0Nc(Cmin) (5)

The equality is achieved iff ∆ij(Cmin) =

 1 if δEij(S)) < 0

0 otherwise.
(6)

ε0 corresponds to a threshold of contact energy for a residue pair to be in contact in native structures.
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Spectral relationship between C and E matrices

Singular value decompositions: λµ(C) and εν(S) are eigenvalues.

∆ij(C) =
∑
µ

|λµ(C)|Liµ(C)Rjµ(C) Eij(S) =
∑
ν

|εν(S)|Uiν(S)Vjν(S) + ε0 (7)

|λ1(C)| ≥ . . . ≥ |λN(C)| ≥ 0 |ε1(S)| ≥ . . . ≥ |εN(S)| ≥ 0 (8)

The total contact energy:

Ec(C, S) =
1

2

∑
µ

∑
ν

|λµ(C)||εν(S)|ωµν(C, S) + ε0Nc(C) (9)

where

ωµν(C, S) = tLµ(C)U ν(S)tRµ(C)V ν(S) (10)

The lower bounds are achieved by Go-like potentials:

Ec(C, S) ≥ − 1

2

∑
{ξ|λξεξ 6=0}

|λξ(C)εξ(S)| + ε0Nc(C) (11)

The equality is achieved iff ωµν = −δµν for {µ|λµεµ 6= 0} (12)

≥ − 1

2
‖~λ(C)‖{ξ|λξεξ 6=0}‖~ε(S)‖{ξ|λξεξ 6=0} + ε0Nc(C) (13)

= − 1

2
‖δ~E(S)‖{ξ|λξεξ 6=0}‖~∆(C)‖{ξ|λξεξ 6=0} + ε0Nc(C) (14)

The equality is achieved iff εξ(S) = ελξ(C) with ε < 0 for {ξ|λξεξ 6= 0} (15)
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Relationships to be satisfied
in the lower bounds of conformational energy

1. All the corresponding left (Lµ and Uµ) and right (Rµ and V µ) singular vectors of the C- and E- matrices

are parallel or anti-parallel to each other, that is, Eq. 12; ωµν = −δµν.

2. The principal eigenvector R1 of the C matrix and contact number vector n tends to be in parallel to make

the principal eigenvalue larger.

λµ(C) =
tRµ(C)n(C)
tRµ(C)1

= 〈n2
•〉1/2 tRµn‖1‖/(tRµ1‖n‖) (16)

3. The contact number vector n and the vector of mean relative contact energy δ~E• tends to be anti-parallel.

Ec(C, S) ≈ 1

2

∑
i

∑
j

[
1

N

∑
k

δEik(S)]∆ij(C) + ε0Nc(C) (17)

≥ − 1

2
‖δ~E•(S)‖‖n(C)‖ + ε0Nc(C) (18)

δ~E•(S) ≡ t(. . . ,
1

N

∑
k

δEik(S), . . .) (19)
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Is a pairwise residue-residue potential sufficient to make
native structures unique lowest-energy conformations?

It is highly possible that multiple lowest energy conformations may exist, because

1. Ec(C, S) =
1

2

∑
ν

|εν|(tU∆(C)V )νν + ε0Nc(C) (20)

2. ∃εξ = 0 because rank(δEij) ≤ 20. (21)
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3. DATA ANALYSES

The relationships between E and C matrices indicated for lower energy conformations are examined by crudely

evaluating pairwise interactions in native structures with a statistical contact potential.

Pairwise contact potential used:

A statistical estimate of contact energies with a correction for the Bethe approximation (Miyazawa &

Jernigan, Proteins 34, 49, 1999); the contact energy between amino acids a and b is evaluated as

eab = err + α′[∆eBethe
ar + ∆eBethe

rb +
β ′

α′
δeBethe

ab ] (22)

where β′

α′ = 2.2, and the subscript r represents the mean effects from an amino acid.

Protein structures analyzed:

189 proteins of representatives from each family of classes 1 – 4 in SCOP 1.69.
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An optimum value of ε0 in Eqs. 3, 5, 11, and 13,

where the average of tR1V 1 over 182 proteins has a maximum;

ε0 corresponds to a threshold of contact energy that separates native contacts from non-native ones.
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This optimum value of ε0 is used for the singular decomposition of E matrices in the following analyses.
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The primary eigenvectors, R1 and V 1, of C- and E- matrices tend to be parallel to each other.
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In the t-tests of the correlation coefficients between R1 and V 1, the geometric mean of probabilities

for a significance over 182 proteins is equal to exp(−18.4).
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The primary eigenvector, R1, of C-matrix tends to be parallel to the contact number vector, n.
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The dotted lines indicate the iso-value lines for tR1n/ ‖ n ‖, whose values are shown in the figure.
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The contact vector, n, tends to be parallel to the mean contact energy vector, −δ~E•,
although not strongly.
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In the t-tests of the correlation coefficients between n and −δ~E•, the geometric mean of probabilities

for a significance over 182 proteins is equal to exp(−27.9).
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4. CONCLUSIONS

Pairwise contact interactions in proteins force native C matrices to be in a relationship as if the

interactions are a Go-like potential. As a result, the following relationships between E- and C- matrices

for protein native structures are expected, and have been observed in 182 representative proteins;

1. a parallel relationship between the principal eigenvectors of the C- and E-matrices, and

2. a parallel relationship between a contact number vector and the principal eigenvectors of the C-

and E-matrices,

provided that the E-matrix is eigen-decomposed with an additional constant term that corresponds to

a threshold of contact energy that approximately separates native contacts from non-native ones.

The spectral representation of C- and E-matrices also reveals that pairwise residue-residue interac-

tions, which depends only on the types of interacting amino acids, are insufficient and other interactions

including residue connectivities and steric hindrance are needed to make native structures unique lowest-

energy conformations.

Reference: Phys.Rev.E, 77:051910, 2008.
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