Selection maintaining protein stability at equilibrium

Sanzo Miyazawa
sanzo.miyazawa@gmail.com
at the 61st BPS annual meeting on February 12, 2017

The common understanding of protein evolution:

- Most amino acid substitutions observed in homologous proteins were selectively neutral and fixed by random drift.
- A proportion of neutral mutations that depends on the strength of structural and functional constraints primarily determines evolutionary rate.

Recently a question has been raised on the common view of protein evolution.

- There are a diversity of protein evolutionary rates among genes.
- Protein evolutionary rate is correlated with gene expression level; highly expressed genes evolve slowly.
- Fitness costs due to misfolded proteins are a determinant of evolutionary rate and selection originating in protein stability is a driving force of protein evolution.

Here we examine protein evolution under the selection maintaining protein stability.

Functional loss and toxicity due to misfolded proteins

Functional loss and toxicity caused by misfolded proteins (Drummond et al., 2005):

- Misfolding reduces the concentration of functional proteins.
- Misfolding wastes cellular time and energy on production of useless proteins.
- Misfolded proteins form insoluble aggregates.

Fitness cost due to misfolded proteins is larger for highly expressed genes than for less expressed ones (Geiler-Samerotte et al., 2011).

A generic form of fitness costs due to protein misfolding

- Malthusian fitness for protein dispensability (Drummond et al., 2008):

$$
\begin{equation*}
m_{\text {dispensability }} \equiv-\sum_{i} \gamma_{i}\left(1-f_{i}^{\text {native }}\right) \tag{1}
\end{equation*}
$$

- Malthusian fitness for toxicity of misfolded proteins (Drummond et al., 2008):

$$
\begin{equation*}
m_{\text {misfolds }}=-c \sum_{i} A_{i} \frac{1-f_{i}^{\text {native }}}{f_{i}^{\text {native }}} \tag{2}
\end{equation*}
$$

- Selection to maintain protein stability (Dasmeh et al., 2014):

$$
\begin{equation*}
m=\log f^{\text {native }} \tag{3}
\end{equation*}
$$

The proportion of native conformations, $f^{\text {native }}$, in a two state transition:

$$
\begin{equation*}
f^{\text {native }}=\frac{e^{-\beta \Delta G}}{1+e^{-\beta \Delta G}} \tag{4}
\end{equation*}
$$

where ΔG is the folding free energy of protein.
Because $\exp \beta \Delta G \ll 1$ for typical proteins, all these formulas of Malthusian fitness for misfolded proteins are reduced to

$$
\begin{equation*}
m \equiv-\sum_{i} \kappa_{i} e^{\beta \Delta G_{i}} \quad \text { with } \kappa_{i} \geq 0 \tag{5}
\end{equation*}
$$

3. Methods

The evolution of a single coding gene in a monoclonal approximation

Here, we consider the evolution of a single protein-coding gene in which the selective advantage of mutant proteins in Malthusian parameters is assumed to be

$$
\begin{align*}
s & \equiv m^{\text {mutant }}-m^{\text {wildtype }} \tag{6}\\
4 N_{e} s & =4 N_{e} \kappa e^{\beta \Delta G}\left(1-e^{\beta \Delta \Delta G}\right) \quad \text { with } \kappa \geq 0 \tag{7}
\end{align*}
$$

If the fitness costs of functional loss and toxicity due to misfolded proteins are both taken into account and assumed to be additive in the Malthusian fitness scale, κ will be defined as

$$
\begin{equation*}
\kappa=c A+\gamma \tag{8}
\end{equation*}
$$

c	$\sim 10^{-4}$	fitness cost per misfolded protein
A	$10<A<10^{6}$	cellular abundance of protein
γ	$0 \leq \gamma \leq 10$	protein indispensability
N_{e}		effective population size
	$\sim 10^{4}$ to 10^{5}	for vertebrates
	$\sim 10^{5}$ to 10^{6}	for invertebrates
	$\sim 10^{7}$ to 10^{8}	for unicellular eukaryotes
	$>10^{8}$	for prokaryotes

Stability changes, $\Delta \Delta G$, due to single amino acid substitutions

PDF approximated with a weighted sum of two Gaussian functions (Tokuriki et al., 2007):

$$
\begin{equation*}
p(\Delta \Delta G)=\theta \mathcal{N}\left(\mu_{s}, \sigma_{s}\right)+(1-\theta) \mathcal{N}\left(\mu_{c}, \sigma_{c}\right) \tag{9}
\end{equation*}
$$

$$
\begin{align*}
\text { For surface residues : } & \mu_{s}=-0.14 \Delta G-0.17, \quad \sigma_{s}=0.90 \tag{10}\\
\text { For core residues : } & \mu_{c}=-0.14 \Delta G+1.23, \quad \sigma_{c}=1.93 \tag{11}
\end{align*}
$$

The dependences of the means, μ_{c} and μ_{s}, on ΔG are estimated from the regression line of observed values of $\Delta \Delta G$ of mutant proteins on ΔG of the wild-type protein.

Solid: regression; Broken: μ_{c}, Dotted: $\mu_{c} \pm \sigma_{c}$; Broken: μ_{s}, Dotted: $\mu_{s} \pm \sigma_{s}$

PDFs of $4 N_{e} s$ and K_{a} / K_{s}

Instead of pursueing computer simulations of gene populations, we calculate the probability density functions (PDF) of characteristic quantities such as selective advantage, fixation probabilty, and K_{a} / K_{s}, and examine the protein evolution of the gene in a monoclonal approximation.

Fixation probability:

$$
\begin{equation*}
u\left(4 N_{e} s\right)=\frac{1-e^{-4 N_{e} s q}}{1-e^{-4 N_{e} s}} \tag{12}
\end{equation*}
$$

where $q=1 /(2 N)$ for a mutant gene, and N is a population size. Population size is taken to be $N=10^{6}$.

The ratio of nonsynonymous $\left(K_{a}\right)$ to synonymous substitution rate per site $\left(K_{s}\right)$:

$$
\begin{equation*}
\frac{K_{a}}{K_{s}}=\frac{u\left(4 N_{e} s\right)}{u(0)}=\frac{u\left(4 N_{e} s\right)}{q} \quad \text { with } q=\frac{1}{2 N} \tag{13}
\end{equation*}
$$

PDF of $4 N_{e} s: p\left(4 N_{e} s\right)=-p(\Delta \Delta G) \frac{d \Delta \Delta G}{d 4 N_{e} s}$
PDF of $K_{a} / K_{s}: p\left(K_{a} / K_{s}\right)=p\left(4 N_{e} s\right) \frac{d 4 N_{e} s}{d u} \frac{d u}{d\left(K_{a} / K_{s}\right)}$

PDFs of $\Delta \Delta G, 4 N_{e} s$, and K_{a} / K_{s} in fixed mutants

PDF of $\Delta \Delta G$ in fixed mutants:

$$
\begin{align*}
p\left(\Delta \Delta G_{\mathrm{fixed}}\right) & \equiv p(\Delta \Delta G) \frac{u\left(4 N_{e} s\right)}{\langle u\rangle} \tag{14}\\
\langle u\rangle & \equiv \int_{-\infty}^{\infty} u\left(4 N_{e} s\right) p(\Delta \Delta G) d \Delta \Delta G \tag{15}
\end{align*}
$$

PDF of $4 N_{e} s$ in fixed mutants:

$$
\begin{equation*}
p\left(4 N_{e} s_{\text {fixed }}\right)=-p\left(\Delta \Delta G_{\mathrm{fixed}}\right) \frac{d \Delta \Delta G}{d 4 N_{e} s} \tag{16}
\end{equation*}
$$

PDF of K_{a} / K_{s} in fixed mutants:

$$
\begin{equation*}
p\left(\left(K_{a} / K_{s}\right)_{\text {fixed }}\right)=p\left(4 N_{e} s_{\text {fixed }}\right) \frac{d 4 N_{e} s}{d u} \frac{d u}{d\left(K_{a} / K_{s}\right)} \tag{17}
\end{equation*}
$$

4. Results

PDFs of stability change, $\Delta \Delta G$,

due to single amino acid substitutions at equilibrium stability, $\Delta G=\Delta G_{e}$, where $\langle\Delta \Delta G\rangle_{\text {fixed }}=0$.
in all mutants

Equilibrium stability, ΔG_{e}

The average, $\langle\Delta \Delta G\rangle_{\text {fixed }}$, of stability changes over fixed mutants versus protein stability, ΔG, of the wild type.

ΔG_{e} is the stable equilibrium point for ΔG, where $\langle\Delta \Delta G\rangle_{\mathrm{fixed}}=0$.

Dependence of equilibrium stability, ΔG_{e}, on parameters, $4 N_{e} \kappa$ and θ.

- The value of $\beta \Delta G_{e}+\log 4 N_{e} \kappa$ is the upper bound of $\log 4 N_{e} s$, and would be constant if the mean of $\Delta \Delta G$ in all arising mutants did not depend on ΔG.
- ΔG_{e} decreases as $\log 4 N_{e} \kappa$, effective population size or protein abundance/indispensability, increases.

Distribution of folding free energies of monomeric protein families

- The observed range of ΔG shown above is consistent with that range, -2 to $-12.5 \mathrm{kcal} / \mathrm{mol}$, expected from the present model.

- Protein abundance/indispensability and effective population size, $4 N_{e} \kappa$, more decrease evolutionary rate for less-constrained proteins.
- Structural constraint, $1-\theta$, more decreases evolutionary rate for less-abundant, less-essential proteins.
- $\left\langle K_{a} / K_{s}\right\rangle<1$ over a whole range of the parameters.

PDFs of K_{a} / K_{s} at equilibrium of protein stability,

 $\Delta G=\Delta G_{e}$, where $\langle\Delta \Delta G\rangle_{\text {ixixed }}=0$.

 $\Delta G=\Delta G_{e}$, where $\langle\Delta \Delta G\rangle_{\text {ixixed }}=0$.}
in all mutants

in fixed mutants

Probability of each selection category

in fixed mutants at equilibrium of protein stability, $\Delta G=\Delta G_{e}$.

- Nearly neutral selection is predominant only for low-abundant, non-essential proteins.
- Positive selection is significant for the other proteins.
nearly neutral selection, $P\left(0.95<\left(K_{a} / K_{s}\right)_{\text {fixed }}<1.05\right) \quad$ positive selection, $P\left(1.05<\left(K_{a} / K_{s}\right)_{\text {fixed }}\right)$

slightly negative selection, $P\left(0.5<\left(K_{a} / K_{s}\right)_{f i x e d}<0.95\right)$
negative selection, $P\left(\left(K_{a} / K_{s}\right)_{f i x e d}<0.5\right)$
- Slightly negative selection is always significant.

Dependence of each selection on $4 N_{e} \kappa$ and $\triangle G$

in fixed mutants; shown within $2 \cdot \Delta \Delta G_{\text {fixed }}^{\text {sd }}$ around $\Delta G=\Delta G_{e}$ indicated by a blue line.

- Positive selection is predominant in $\Delta G>\Delta G_{e}$.
- Nearly neutral and slightly negative selections are predominant in $\Delta G<\Delta G_{e}$.
nearly neutral selection
positive selection

Dependence of each selection on structural constraint (θ) and $\triangle G$

in fixed mutants; shown within $2 \cdot \Delta \Delta G_{\text {fixed }}^{\text {sd }}$ around $\Delta G=\Delta G_{e}$ indicated by a blue line.

- Positive selection is predominant in $\Delta G>\Delta G_{e}$.
- Nearly neutral and slightly negative selections are predominant in $\Delta G<\Delta G_{e}$.
nearly neutral selection
positive selection

Dependence of the average of K_{a} / K_{s} on ΔG of the wild type;

shown within $2 \cdot \Delta \Delta G_{\text {fixed }}^{\text {sd }}$ around $\Delta G=\Delta G_{e}$ indicated by a blue line.

- $\left\langle K_{\mathrm{a}} / K_{s}\right\rangle<1$ but $\left\langle K_{\mathrm{a}} / K_{s}\right\rangle_{\text {fixed }}>1$ in $\Delta G>\Delta G_{e}$.
- $\left\langle K_{a} / K_{s}\right\rangle_{\text {fixed }} \sim 1$ in $\Delta G<\Delta G_{e}$, in which nearly neutral selection is predominant.

Dependence of equilibrium stability, ΔG_{e}, on growth temperature T

- Protein stability $\left(-\Delta G_{e} / k T\right)$ is predicted to decrease as growth temperature increases.

- Evolutionary rate may be predicted from θ and ΔG_{e} rather than $4 N_{e} \kappa$.

- The range, -2 to $-12.5 \mathrm{kcal} / \mathrm{mol}$, of equilibrium values, ΔG_{e}, of protein stability calculated with the present fitness model is consistent with the distribution of experimental values.
- Contrary to the neutral theory, nearly neutral selection is predominant only in low-abundant, non-essential proteins of $\log 4 N_{e} \kappa<2$ or $\Delta G_{e}>-2.5 \mathrm{kcal} / \mathrm{mol}$. In the other proteins, positive selection on stabilizing mutations is significant to maintain protein stability at equilibrium as well as random drift on slightly negative mutants. However, $\left\langle K_{a} / K_{s}\right\rangle$ and even $\left\langle K_{a} / K_{s}\right\rangle_{\text {fixed }}$ at $\Delta G=\Delta G_{e}$ are less than 1.
- Protein abundance/indispensability (κ) and effective population size $\left(N_{e}\right)$ more affect evolutionary rate for less constrained proteins, and structural constraint $(1-\theta)$ for less abundant, less essential proteins.
- Protein indispensability must negatively correlate with evolutionary rate like protein abundance, but the correlation between them may be hidden by the variation of protein abundance and detected only in low-abundant proteins.
- The present model indicates that protein stability $\left(-\beta \Delta G_{e}\right)$ and $\left\langle K_{a} / K_{s}\right\rangle$ decrease as growth temperature increases.

