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Chapter 9 1
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Abstract Predicting three dimensional residue-residue contacts from evolution- 5

ary information in protein sequences was attempted already in the early 1990s. 6

However, contact prediction accuracies of methods evaluated in CASP experiments 7

before CASP11 remained quite low, typically with <20% true positives. Recently, 8

contact prediction has been significantly improved to the level that an accurate three 9

dimensional model of a large protein can be generated on the basis of predicted 10

contacts. This improvement was attained by disentangling direct from indirect 11

correlations in amino acid covariations or cosubstitutions between sites in protein 12

evolution. Here, we review statistical methods for extracting causative correlations 13

and various approaches to describe protein structure, complex, and flexibility based 14

on predicted contacts. 15

Keywords Contact prediction · Direct coupling · Amino acid covariation · 16

Amino acid cosubstitution · Partial correlation · Maximum entropy model · 17

Inverse Potts model · Markov random field · Boltzmann machine · Deep neural 18

network 19

9.1 Introduction 20

The evolutionary history of protein sequences is a valuable source of information 21

in many fields of science not only in evolutionary biology but even to understand 22

protein structures. Residue-residue interactions that fold a protein into a unique 23

three-dimensional (3D) structure and make it play a specific function impose struc- 24

tural and functional constraints in varying degrees on each amino acid. Selective 25

constraints on amino acids are recorded in amino acid orders in homologous protein 26

sequences and also in the evolutionary trace of amino acid substitutions. Negative 27
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Fig. 9.1 Amino acids at sites
i and j in a MSA are shown
with a phylogenetic tree.
Causative correlations
between sites in protein
evolution are extracted from
the MSA or phylogenetic
tree, and utilized to infer
close residue pairs

effects caused by mutations at one site must be compensated by successive muta- 28

tions at other sites (Yanovsky et al. 1964; Fitch and Markowitz 1970; Maisnier-Patin 29

and Andersson 2004), causing covariations/cosubstitutions/coevolution between 30

sites (Tufféry and Darlu 2000; Fleishman et al. 2004; Dutheil et al. 2005; Dutheil 31

and Galtier 2007), otherwise most negative mutants will be eliminated from a 32

gene pool and never reach fixation in population. Such structural and functional 33

constraints arise from interactions between sites mostly in close spatial proximity. 34

Thus, it has been suggested and also shown that the types of amino acids (Lapedes 35

et al. 1999, 2002, 2012; Russ et al. 2005; Skerker et al. 2008; Burger and van 36

Nimwegen 2008; Weigt et al. 2009; Halabi et al. 2009; Burger and van Nimwegen 37

2010; Morcos et al. 2011; Marks et al. 2011) and amino acid substitutions (Altschuh 38

et al. 1988; Göbel et al. 1994; Shindyalov et al. 1994; Pollock and Taylor 1997; 39

Pollock et al. 1999; Atchley et al. 2000; Fariselli et al. 2001; Fodor and Aldrich 40

2004; Fleishman et al. 2004; Dutheil et al. 2005; Martin et al. 2005; Fares and 41

Travers 2006; Doron-Faigenboim and Pupko 2007; Dutheil and Galtier 2007; Dunn 42

et al. 2008; Poon et al. 2008; Dutheil 2012; Gulyás-Kovács 2012) are correlated 43

between sites that are close in a protein 3D structure. However, until CASP11, 44

contact prediction accuracy remained quite low, typically with ≤20% true positives 45

for top-L/5 long-range contacts in free modeling targets (Kosciolek and Jones 46

2016); L denotes protein length. Recently contact prediction has been significantly 47

improved to the level that an accurate three dimensional model of a large protein 48

(�250 residues) can be generated on the basis of predicted contacts (Moult et al. 49

2016). These improvements were attained primarily by disentangling direct from 50

indirect correlations in amino acid covariations or cosubstitutions between sites in 51

protein evolution, and secondarily by reducing phylogenetic biases in a multiple 52

sequence alignment (MSA) or removing them on the basis of a phylogenetic tree; 53

see Fig. 9.1. 54

Here, we review statistical methods for extracting causative correlations in amino 55

acid covariations/cosubstitutions between sites, and various approaches to describe 56

protein structure, complex and flexibility based on predicted contacts. Mathematical 57

formulation of each statistical method is concisely described in the unified manner 58

in an appendix, the full version of which will be found in the article (Miyazawa 59

2017a) submitted to arXiv. 60
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9.2 Statistical Methods to Extract Causative Interactions 61

Between Sites 62

The primary task to develop a robust method toward contact prediction is to 63

detect causative correlations, which reflect evolutionary constraints, in amino acid 64

covariations between sites in a multiple sequence alignment (MSA) or in amino acid 65

cosubstitutions between sites in branches of a phylogenetic tree; see Table 9.1. The 66

former was called direct coupling analysis (DCA) (Morcos et al. 2011). 67

Table 9.1 Statistical methods for disentangling direct from indirect correlations between sites

Category

t3.1Method name Method/algorithm

(A) Direct coupling analysis of amino acid covariations between sites in a MSA

t3.2Boltzmann machine Markov chain Monte Carlo to calculate marginal
probabilities and gradient descent to estimate fields
and couplings

t3.3CMI (Lapedes et al. 2012) Boltzmann machine to estimate conditional mutual
information

t3.4mpDCA (Weigt et al. 2009) Message-passing algorithm to estimate marginal
probabilities and gradient descent to estimate fields
and couplings

t3.5mfDCA (Morcos et al. 2011; Marks
et al. 2011)

Mean field approximation to estimate the partition
function

t3.6PSICOV (Jones et al. 2012) Graphical lasso (Gaussian approximation with an
exponential prior) with a shrinkage method for a
covariance matrix

t3.7GaussDCA (Baldassi et al. 2014) A multivariate Gaussian model with a normal-
inverse-Wishart prior

t3.8plmDCA (Ekeberg et al. 2013,
2014)

Pseudo-likelihood maximization with Gaussian pri-
ors (�2 regularizers)

t3.9GREMLIN (Balakrishnan et al.
2011; Kamisetty et al. 2013)

Pseudo-likelihood maximization with �1 regulariza-
tion terms (Balakrishnan et al. 2011) or with Gaus-
sian priors (Kamisetty et al. 2013) which depend on
site pair

t3.10ACE (Cocco and Monasson 2011,
2012; Barton et al. 2016)

Adaptive cluster expansion of cross-entropy with
Gaussian priors

t3.11Persistent VI & Fadeout Variational inference with sparsity-inducing prior,
horseshoe (Ingraham and Marks 2016)

t3.12Sutto et al. (2015) Boltzmann machine with �2 regularization terms

t3.13DI (Taylor and Sadowski 2011) Partial correlation of normalized mutual informations
between sites

(B) Partial correlation analysis of amino acid cosubstitutions between sites in a phylogenetic tree

t3.14pcSV (Miyazawa 2013) Partial correlation coefficients of coevolutionary sub-
stitutions between sites within branches in a phyloge-
netic tree
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9.2.1 Direct Coupling Analysis for Amino Acid Covariations 68

Between Sites in a Multiple Sequence Alignment 69

The direct coupling analysis is based on the maximum entropy model for the 70

distribution of protein sequences, which satisfies the observed statistics in a MSA. 71

9.2.1.1 Maximum Entropy Model for the Distribution of Protein 72

Sequences 73

Let us consider probability distributions P(σ) of amino acid sequences, σ ≡ 74

(σ1, . . . ,σL)T with σi ∈ {amino acids, deletion}, single-site and two-site marginal 75

probabilities of which are equal to a given frequency Pi(ak) of amino acid ak at 76

each site i and a given frequency Pij (ak, al) of amino acid pair (ak, al) for site pair 77

(i, j), respectively. 78

P(σi = ak) ≡
∑

σ

P(σ)δσi ak
= Pi(ak) (9.1)

P(σi = ak,σj = al) ≡
∑

σ

P(σ)δσi ak
δσj al

= Pij (ak, al) (9.2)

where ak ∈ {amino acids, deletion}, k = 1, . . . , q, q ≡ |{amino acids, deletion}| = 79

21, i, j = 1, . . . , L, and δσi ak
is the Kronecker delta. The distribution PME with the 80

maximum entropy is 81

PME(σ|h, J ) (9.3)

= arg max
P(σ)

[−
∑

σ

P(σ) log P(σ) + λ(
∑

σ

P(σ) − 1)

+
∑

i

[hi(ak)(
∑

σ

P(σ)δσi ak
− Pi(ak))]

+
∑

i

∑

j>i

[Jij (ak, al)(
∑

σ

P(σ)δσi ak
δσj al

− Pij (ak, al))]] = 1

Z
e−HPotts(σ|h,J )

(9.4)

where λ, hi(ak), and Jij (ak, al) are Lagrange multipliers, and a Hamiltonian HPotts, 82

which is called that of the Potts model for q > 2 (or the Ising model for q = 2), and 83

a partition function Z are defined as 84

−HPotts(σ|h, J ) =
∑

i

hi(σi ) +
∑

i<j

Jij (σi ,σj ), Z =
∑

σ

e−HPotts(σ|h,J ) (9.5)

where hi(ak) and Jij (ak, al) are interaction potentials called fields and couplings. 85

Sanzo Miyazawa


Sanzo Miyazawa


Sanzo Miyazawa


Sanzo Miyazawa


Sanzo Miyazawa


Sanzo Miyazawa
Greek sigmas, in red ovals, with a subscript  should not be bold.  Greek sigmas that have a subscript and are in a red oval should be a normal font.

Sanzo Miyazawa


Sanzo Miyazawa


Sanzo Miyazawa


Sanzo Miyazawa


Sanzo Miyazawa


Sanzo Miyazawa


Sanzo Miyazawa


Sanzo Miyazawa


Sanzo Miyazawa


Sanzo Miyazawa


Sanzo Miyazawa




UNCORRECTED
PROOF

9 Prediction of Structures and Interactions from Genome Information 125

Although pairwise frequencies Pij (ak, al) reflect not only direct but indirect 86

correlations in amino acid covariations between sites, couplings Jij (ak, al) reflect 87

causative correlations only. Thus, it is essential to estimate fields and couplings from 88

marginal probabilities. This model is called the inverse Potts model. 89

9.2.1.2 Log-Likelihood and Log-Posterior-Probability 90

Log-posterior-probability and log-likelihood for the Potts model are 91

log Ppost(h, J |{σ}) ∝ �Potts({Pi}, {Pij }|h, J ) + log P0(h, J ) (9.6)

�Potts({Pi}, {Pij }|h, J ) = B
∑

σ

Pobs(σ) log PME(σ|h, J ) (9.7)

where Pobs(≡ ∑B
τ=1 δσστ/B) is the observed distribution of σ specified with 92

{Pi(ak)} and {Pij (ak, al)}, and B is the number of instances; sequences στ are 93

assumed here to be independently and identically distributed samples in sequence 94

space. P0(h, J ) is a prior probability of (h, J ). 95

Let us define cross entropy (Cocco and Monasson 2012) as the negative log- 96

posterior-probability per instance. 97

S0(h, J |{Pi}, {Pij }) ∝ −(log Ppost(h, J |{σ}))/B
≡ SPotts(h, J |{Pi}, {Pij }) + R(h, J ) (9.8)

where the cross entropy SPotts, which is the negative log-likelihood per instance for 98

the Potts model, and the negative log-prior per instance R are defined as follows. 99

SPotts(h, J |{Pi}, {Pij }) ≡ −�Potts({Pi}, {Pij }|h, J )/B (9.9)

= log Z(h, J ) −
∑

i

∑

k

hi(ak)Pi(ak) −
∑

i

∑

k

∑

j>i

∑

l

Jij (ak, al)Pij (ak, al)

(9.10)
100

R(h, J ) ≡ − log(P0(h, J ))/B (9.11)

The maximum likelihood estimates of h and J , which minimize the cross entropy 101

with R = 0, satisfy the following equations. 102

∂ log Z(h, J )

∂hi(ak)
= Pi(ak),

∂ log Z(h, J )

∂Jij (ak, al)
= Pij (ak, al) (9.12)

It is, however, hardly tractable to computationally evaluate the partition function 103

Z(h, J ) for any reasonable system size as a function of h and J . Thus, approximate 104

maximization of the log-likelihood or minimization of the cross entropy is needed 105

to estimate h and J . 106
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The minimum of the cross entropy with R = 0 for the Potts model is just the 107

Legendre transform of log Z(h, J ) from (h, J ) to ({Pi}, {Pij }), (Eq. 9.10), and is 108

equal to the entropy of the Potts model satisfying Eqs. 9.1 and 9.2; 109

SPotts({Pi}, {Pij }) ≡ min
h,J

SPotts(h, J |{Pi}, {Pij }) =
∑

σ

−P(σ) log P(σ) (9.13)

The cross entropy SPotts(h, J |{Pi}, {Pij }) in Eq. 9.10 is invariant under the a certain 110

transformation of fields and couplings, Jij (ak, al) → Jij (ak, al) − J 1
ij (ak) − 111

J 1
j i(al)+J 0

ij , hi(ak) → hi(ak)−h0
i +∑

j �=i J 1
ij (ak) for any J 1

ij (ak), J 0
ij and h0

i . This 112

gauge-invariance reduces the number of independent variables in the Potts model to 113

(q − 1)L fields and (q − 1)L × (q − 1)L couplings. 114

A prior P0(h, J ) yields regularization terms for h and J (Cocco and Monasson 115

2012). If a Gaussian distribution is employed for the prior, then it will yield �2 norm 116

regularization terms. �1 norm regularization corresponds to the case of exponential 117

priors. Given marginal probabilities, the estimates of fields and couplings are those 118

minimizing the cross entropy. 119

(h, J ) = arg min
(h,J )

S0(h, J |{Pi}, {Pij }), S0({Pi}, {Pij }) ≡ min
(h,J )

S0(h, J |{Pi}, {Pij })
(9.14)

Since S0({Pi}, {Pij }) is the Legendre transform of (log Z(h, j) + R(h, J )) from 120

(h, J ) to ({Pi}, {Pij }), these optimum h and J can also be calculated from 121

hi(ak) = −∂S0({Pi}, {Pij })
∂Pi(ak)

, Jij (ak, al) = −∂S0({Pi}, {Pij })
∂Pij (ak, al)

(9.15)

In most methods for contact prediction, residue pairs are predicted as contacts in 122

the decreasing order of score (Sij ) calculated from fields {Jij (ak, al)|1 ≤ k, l < q}; 123

see Eq. 9.47. 124

9.2.1.3 Inverse Potts Model 125

The problem of inferring interactions from observations of instances has been 126

studied as inverse statistical mechanics, particularly inverse Potts model for Eq. 9.4, 127

in the filed of statistical physics, as a Markov random field, Markov network or 128

undirected graphical model in the domain of physics, statistics and information 129

science, and as Boltzmann machine in the field of machine learning. 130

The maximum-entropy approach to the prediction of residue-residue contacts 131

toward protein structure prediction from residue covariation pattems was first 132

described in 2002 by Lapedes and collaborators (Giraud et al. 1999; Lapedes 133

et al. 1999, 2002, 2012). They estimated conditional mutual information (CMI), 134

which was employed as a score for residue-residue contacts, for each site pair by 135

Boltzmann leaning with Monte Carlo importance sampling to calculate equilibrium 136

Sanzo Miyazawa
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averages and gradient descent to minimize the cross entropy and successfully 137

predicted contacts for 11 small proteins. 138

Calculating marginal probabilities for given fields and couplings by Monte Carlo 139

simulations in Boltzmann machine is very computationally intensive. To reduce 140

a computational load, the message passing algorithm, which is exact for a tree 141

topology of couplings but approximate for the present model, is employed instead 142

in mpDCA (Weigt et al. 2009). Because even the message passing algorithm is 143

too slow to be applied to a large-scale analysis across many protein families, the 144

mean field approximation is employed in mfDCA (Morcos et al. 2011; Marks et al. 145

2011); JMF = −C−1, where Cij (ak, al) ≡ Pij (ak, al)−Pi(ak)Pi(al). In the mean 146

field approximation, a bottleneck in computation is the calculation of the inverse 147

of a covariance matrix C that is a (q − 1)L × (q − 1)L matrix. In the mean 148

field approximation, a prior distribution in Eq. 9.11 is ignored and pseudocount is 149

employed instead of regularization terms to make the covariance matrix invertible. 150

The Gaussian approximation (a continuous multivariate Gaussian model) for the 151

probability distribution of sequences is employed together with an exponential prior 152

(an �1 regularization term) in PSICOV (Jones et al. 2012), and with a normal- 153

inverse-Wishart (NIW) prior, which is a conjugate distribution of the multivariate 154

Gaussian, in GaussDCA (Baldassi et al. 2014). The use of NIW prior has a merit 155

that fields and couplings can be analytically formulated; see Eqs. 9.30 and 9.31. 156

All methods based on the Gaussian approximation employ the analytical formula 157

for couplings, J � −C−1 = −�, which are essentially as same as the mean field 158

approximation with a difference that the covariance matrix (C) or precision matrix 159

(�) is differently estimated based on the various priors. The mean field and Gaus- 160

sian approximations may be appropriate to systems of dense and weak couplings 161

but questionable for sparse and strong couplings that is the characteristic of residue- 162

residue contact networks. Although the mean field and Gaussian approximations 163

successfully predict residue-residue contacts in proteins, it has been shown (Barton 164

et al. 2016; Cocco et al. 2017) that they do not give the accurate estimates of fields 165

and couplings in proteins. 166

A pseudo-likelihood with Gaussian priors (�2 regularization terms) is maximized 167

to estimate fields and couplings in plmDCA (Ekeberg et al. 2013, 2014) for the 168

Potts model with sparse interactions as well as reducing computational time; see 169

Eq. 9.38 for the symmetric plmDCA and Eq. 9.41 for the asymmetric plmDCA. The 170

asymmetric plmDCA method (Ekeberg et al. 2014) requires less computational time 171

and fits particularly with parallel computing. 172

GREMLIN (Kamisetty et al. 2013) employs together with pseudo-likelihood 173

Gaussian priors that depend on site pair, although its earlier version (Balakrishnan 174

et al. 2011) employed �1 regularizers, which may be more appropriate to systems of 175

sparse couplings. The �1 regularizers appear to learn parameters that are closer to 176

their true strength, but the �2 regularizers appear to be as good as the �1 regularizers 177

for the task of contact prediction that requires the relative ranking of the interactions 178

and not their actual values (Kamisetty et al. 2013). 179

One of approaches to surpass the pseudo-likelihood approximation for systems 180

of sparse couplings may be the adaptive cluster expansion (ACE) of cross 181
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entropy (Cocco and Monasson 2011, 2012; Barton et al. 2016), in which cross 182

entropy is approximately minimized by taking account of only site clusters 183

the incremental entropy (cluster entropy) of which by adding one more site is 184

significant. In this method (Barton et al. 2016), a Boltzmann machine is employed 185

to refine fields and couplings and also to calculate model correlations such as 186

single-site and pairwise amino acid frequencies under given fields and couplings. 187

The results of the Boltzmann machine for both biological and artificial models 188

showed that ACE outperforms plmDCA in recovering single-site marginals (amino 189

acid frequencies at each site) and the distribution of the total dimensionless 190

energies (HPotts(σ)) (Barton et al. 2016); those models were a lattice protein, 191

trypsin inhibitor, HIV p7 nucleocapsid protein, multi-electrode recording of cortical 192

neurons, and Potts models on Eridös-Rényi random graphs. More importantly ACE 193

could accurately recover the true fields h and couplings J corresponding to Potts 194

states with Pi(ak) ≥ 0.05 for Potts models (L = 50) on Eridös-Rényi random 195

graphs (Barton et al. 2016). On the other hand, plmDCA gave accurate estimates 196

of couplings at weak regularization for well sampled single-site probabilities, but 197

less accurate fields. Also, plmDCA yielded less well inferred fields and couplings 198

for single-site and two-site probabilities not well sampled, indicating that not 199

well populated states should be merged. As a result, the distribution of the total 200

energies (Barton et al. 2016) and the distribution of mutations with respect to 201

the consensus sequence were not well reproduced (Cocco et al. 2017). Similarly, 202

the mean field approximation could not reproduce two-site marginals and even 203

single-site marginals (Cocco et al. 2017) and the Gaussian approximation could 204

not well reproduce the distribution of mutations with respect to the consensus 205

sequence (Barton et al. 2016). 206

However, the less reproducibility of couplings does not necessarily indicate 207

the less predictability of residue-residue contacts, probably because in contact 208

prediction the relative ranking of scores (Eq. 9.47) based on couplings is more 209

important than their actual values. ACE with the optimum regularization strength 210

with respect to the reproducibility of fields and couplings showed less accurate 211

contact prediction than plmDCA and mfDCA. For ACE to show comparable 212

performance of contact prediction with plmDCA, regularization strength had to be 213

increased from γ = 2/B = 10−3 to γ = 1 for Trypsin inhibitor, making couplings 214

strongly damped and then the generative properties of inferred models lost (Barton 215

et al. 2016) (Table 9.2). 216

9.2.2 Partial Correlation of Amino Acid Cosubstitutions 217

Between Sites at Each Branch of a Phylogenetic Tree 218

In the DCA analyses on residue covariations between sites in a multiple sequence 219

alignment (MSA), phylogenetic biases, which are sequence biases due to phyloge- 220

netic relations between species, in the MSA must be removed as well as indirect 221
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Table 9.2 Free softwares/servers for the direct coupling analysis

t6.1Name Methods URL

t6.2EVcouplings (Marks et al. 2011) mfDCA http://evfold.org

t6.3EVcouplings,
plmc (Toth-Petroczy et al. 2016;
Weinreb et al. 2016)

mf/plmDCA https://github.com/debbiemarkslab

t6.4DCA (Morcos et al. 2011;
Marks et al. 2011)

mfDCA http://dca.rice.edu/portal/dca/home

t6.5GaussDCA (Baldassi et al.
2014)

GaussDCA http://areeweb.polito.it/ricerca/cmp/code

t6.6FreeContact (Kaján et al. 2014) mfDCA, PSICONV http://rostlab.org/owiki/index.php/
FreeContact

t6.7plmDCA (Ekeberg et al. 2013,
2014)

plmDCA http://plmdca.csc.kth.se/
https://github.com/pagnani/plmDCA

t6.8CCMpred (Seemayer et al.
2014)

plmDCA Performance-optimized software
https://github.com/soedinglab/ccmpred

t6.9GREMLIN (Balakrishnan et al.
2011; Kamisetty et al. 2013)

GREMLIN http://gremlin.bakerlab.org/

t6.10ACE (Cocco and Monasson
2011, 2012; Barton et al. 2016)

ACE https://github.com/johnbarton/ACE

t6.11Persistent-vi (Ingraham and
Marks 2016)

Persistent VI https://github.com/debbiemarkslab

correlations between sites, but instead are reduced by taking weighted averages 222

over homologous sequences in the calculation of single and pairwise frequencies 223

of amino acids. 224

Needless to say, it is supposed that observed pattems of covariation were caused 225

by molecular coevolution between sites. Whatever caused covariations found in the 226

MSA, it has been confirmed that they can be utilized to predict residue pairs in 227

close proximity in a three dimensional structure. Talavera et al. (2015) claimed, 228

however, that covarying substitutions were mostly found on different branches of 229

the phylogenetic tree, indicating that they might or might not be attributable to 230

coevolution. 231

In order to remove phylogenetic biases and also to respond to such a claim above, 232

it is meaningful to study covarying substitutions between sites in a phylogenetic 233

tree-dependent manner. Such an alternative approach was taken to infer coevolving 234

site pairs from direct correlations between sites in concurrent and compensatory 235

substitutions within the same branches of a phylogenetic tree (Miyazawa 2013). 236

In this method, substitution probability and mean changes of physico-chemical 237

properties of side chain accompanied by amino acid substitutions at each site in 238

each branch of the tree are estimated with the likelihood of each substitution to 239

detect concurrent and compensatory substitutions. Then, partial correlation coeffi- 240

cients of the vectors of their characteristic changes accompanied by substitutions, 241

substitution probability and mean changes of physico-chemical properties, along 242

branches between sites are calculated to extract direct correlations in coevolutionary 243

http://evfold.org
https://github.com/debbiemarkslab
http://dca.rice.edu/portal/dca/home
http://areeweb.polito.it/ricerca/cmp/code
http://rostlab.org/owiki/index.php/FreeContact
http://rostlab.org/owiki/index.php/FreeContact
http://plmdca.csc.kth.se/
https://github.com/pagnani/plmDCA
https://github.com/soedinglab/ccmpred
http://gremlin.bakerlab.org/
https://github.com/johnbarton/ACE
https://github.com/debbiemarkslab
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substitutions and employed as a score for residue-residue contact. The accuracy of 244

contact prediction by this method was comparable with that by mfDCA (Miyazawa 245

2013). This method, however, has a drawback to be computationally intensive, 246

because an optimum phylogenetic tree must be estimated. 247

9.3 Machine Learning Methods to Augment the Contact 248

Prediction Accuracy Based on Amino Acid Coevolution 249

All the DCA methods such as mfDCA, plmDCA, GREMLIN, and PSICOV predict 250

significantly nonoverlapping sets of contacts (Jones et al. 2015; Kosciolek and Jones 251

2016; Wuyun et al. 2016). Then, increasing prediction accuracy by combining 252

their predictions together with other sequence/structure information have been 253

attempted (Skwark et al. 2013, 2014, 2016; Kosciolek and Jones 2014, 2016; Jones 254

et al. 2015; Wang et al. 2017; Shendure and Ji 2017); see Table 9.3. 255

PconsC (Skwark et al. 2013) combines the predictions of PSICOV and plmDCA 256

into a machine learning method, random forests, and employs alignments with 257

HHblits (Remmert et al. 2012) and jackHMMer (Johnson et al. 2010) at four 258

different e-value cut-offs. Five-layer neural network is employed instead of random 259

forests in PconsC2 (Skwark et al. 2014), and plmDCA and GaussDCA are employed 260

in PconsC3 (Skwark et al. 2016). A receptive field consisting of 11 × 11 predicted 261

contacts around each residue pair is taken into account in each layer except the first 262

one. 263

Table 9.3 Machine learning methods that combine predicted direct couplings with other
sequence/structure information

t9.1Name Basic method Post-processing

t9.2PconsC3
(Skwark et al. 2016)

plmDCA, GaussDCA 5 layer DNN; http://c3.pcons.net.
PconsC (Skwark et al. 2013), PconsC2 (Skwark
et al. 2014)

t9.3MetaPSICOV
(Kosciolek and Jones
2014, 2016; Jones
et al. 2015)

PSICOV, mfDCA,
GREMLIN/CCMpred

A two stage neural network predictor; CONSIP2
pipeline
http://bioinf.cs.ucl.ac.uk/MetaPSICOV

t9.4RaptorX
(Wang et al. 2017)

CCMpred Ultra-deep learning model consisting of 1- and
2-dimensional convolutional residual neural
networks
http://raptorx.uchicago.edu/ContactMap/

t9.5iFold (CASP12 2017) Deep neural network (DNN)

t9.6EPSILON-CP PSICOV, GREMLIN,
mfDCA, CCMpred,
GaussDCA

4 hidden layer neural network with
400-200-200-50 neurons (Shendure and Ji 2017)

http://c3.pcons.net
http://bioinf.cs.ucl.ac.uk/MetaPSICOV
http://raptorx.uchicago.edu/ContactMap/
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MetaPSICOV (Jones et al. 2015; Kosciolek and Jones 2016) combines the 264

predictions of PSICOV, mfDCA, and CCMpred/GREMLIN into the first stage of 265

a two-stage neural network predictor together with a well-established “classic” 266

machine learning contact predictor, which utilizes many features such as amino acid 267

profiles, predicted secondary structure and solvent accessibility along with sequence 268

separation predicted, as an additional source of information for a little depth of 269

MSAs. The second stage analyses the output of the first stage to eliminate outliers 270

and to fill in the gaps in the contact map. On a set of 40 target domains with a 271

median family size of around 40 effective sequences in CASPII, CONSIP2 server 272

achieved an average top-L/5 long-range contact precision of 27% (Kosciolek and 273

Jones 2016). 274

Wang et al. (2017) have also shown that a ultra-deep neural network (RaptorX) 275

can significantly improve contact prediction based on amino acid coevolution. They 276

have modeled short-range and long-range correlations in sequential and structural 277

features with respect to complex sequence-structure relationships in proteins by one- 278

dimensional and two-dimensional deep neural networks (DNN), respectively. Both 279

the DNNs are convolutional residual neural networks. The 1D DNN performs con- 280

volutional transformations, with respect to residue position, of sequential features 281

such as position-dependent scoring matrix, predicted 3-state secondary structure and 282

3-state solvent accessibility. The 2D DNN does 2D convolutional transformations 283

of pairwise features such as coevolutional information calculated by CCMpred, 284

mutual information, pairwise contact potentials as well as the output of the 1D 285

DNN converted by a similar operation to outer product. Residual neural networks 286

are employed because they can pass both linear and nonlinear informations from 287

initial input to final output, making their training relatively easy. 288

9.4 Performance of Contact Prediction 289

New statistical methods based on the direct coupling analysis are confirmed in 290

various benchmarking studies (Moult et al. 2016; CASP12 2017; Kamisetty et al. 291

2013; Wuyun et al. 2016) to show remarkable accuracy of contact prediction, 292

although deep, stable alignments are required. They can more accurately detect 293

a higher number of contacts between residues, which are very distant along 294

sequence (Morcos et al. 2011). The top-scoring residue couplings are not only 295

sufficiently accurate but also well-distributed to define the 3D protein fold with 296

remarkable accuracy (Marks et al. 2011); this observation was quantified by 297

computing, from sequence alone, all-atom 3D structures of 15 test proteins from 298

different fold classes, ranging in size from 50 to 260 residues, including a G-protein 299

coupled receptor. The contact prediction performs relatively better on β proteins 300

than on α proteins (Miyazawa 2013). These initial findings on a limited number of 301

proteins were confirmed as a general trend in a large-scale comparative assessment 302

of contact prediction methods (Wuyun et al. 2016; Adhikari et al. 2016). 303
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In CASP12, RaptorX performed the best in terms of F1 score for top L/2 long- 304

and medium-range contacts of 38 free-modeling (FM) targets; the total F1 score 305

of RaptorX was better by about 7.6% and 10.0% than the second and third best 306

servers, iFold_1 and the revised MetaPSICOV, respectively (Wang et al. 2017; 307

CASP12 2017). Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and 308

398 membrane proteins, the average top L(L/10) long-range prediction accuracies 309

of RaptorX are 0.47(0.77) in comparison with 0.30(0.59) for MetaPSICOV and 310

0.21(0.47) for CCMpred (Wang et al. 2017; CASP12 2017). 311

9.4.1 MSA Dependence of Contact Prediction Accuracy 312

In the direct-coupling-based methods, the accuracy of predicted contacts depends on 313

the depth (Miyazawa 2013; Kamisetty et al. 2013; Wuyun et al. 2016) and quality 314

of multiple sequence alignment (MSA) for a target. 5 × L (protein length) aligned 315

sequences may be desirable for accurate contact predictions (Kamisetty et al. 2013), 316

although attempts to improve prediction methods for fewer aligned sequences have 317

been made (Skwark et al. 2013, 2014, 2016; Wang et al. 2017). PconsC3 can be used 318

for families with as little as 100 effective sequence members (Skwark et al. 2016). 319

Also, RaptorX (Wang et al. 2017) attained top- L/2-accuracy >0.3 for long-rang 320

contacts even by using MSAs with 20 effective sequence members. 321

Deepest MSAs including a target sequence were built with various values of 322

E-value cutoff (Skwark et al. 2013) and coverage parameters (Jones et al. 2015; 323

Kosciolek and Jones 2016) in sequence search and alignment programs based on 324

the hidden Markov models such as HHblits and jackHMMer. Although prediction 325

performance tends to increase in general as alignment depth is deeper (Miyazawa 326

2013), it was reported (Kosciolek and Jones 2016) that in the case of transmembrane 327

domains, building too deep alignments could result in unrelated sequences or 328

drifted domains being included. To increase alignment quality, E-value and coverage 329

parameters may be carefully tuned for each alignment (Kosciolek and Jones 330

2016). In the case of alignments that might contain regions of partial matches, 331

a too stringent sequence coverage requirement could result in missing related 332

sequences. On the other hand, a too permissive sequence coverage requirement 333

could pick up unrelated sequences, permitting many partial matches. A trade-off 334

is required between the effective number of sequences and sequence coverage, and 335

an appropriate E-value must be chosen not to much decrease both alignment depth 336

and sequence coverage (Hopf et al. 2012). 337

9.5 Contact-Guided de novo Protein Structure Prediction 338

It is a primary obstacle to de novo structure prediction that current methods and 339

computers cannot make it feasible to adequately sample the vast conformational 340
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space a protein might take in the precess of folding into the native structure (Kim 341

et al. 2009). Thus, it is critical whether residue-residue proximities inferred with 342

direct coupling analysis can provide sufficient information to reduce a huge search 343

space for a protein fold, without any known 3D structural information of the protein. 344

Algorithms are needed to fold proteins into native folds based on contact 345

information; see Table 9.4. Distance geometry generation (Havel et al. 1983; Braun 346

and Go 1985) of 3D structures, which may be followed by energy minimization and 347

molecular dynamics, will be just the primary one. In EVfold (Marks et al. 2011), 348

contacts inferred by direct coupling analysis and predicted secondary structure 349

information are translated into a set of distance constraints for the use of a distance 350

geometry algorithm in the Crystallography and NMR System (CNS) (Brünger 351

2007). It was confirmed that the evolutionary inferred contacts can sufficiently 352

reduce a search space in the structure predictions of 15 test proteins from different 353

fold classes (Marks et al. 2011), and of 11 unknown and 23 known transmembrane 354

protein structures (Hopf et al. 2012). Because distance constraints from predicted 355

contacts may be partial in a protein sequence, they should be embedded into ab 356

initio structure prediction methods. 357

Table 9.4 Contact-guided de novo protein structure prediction methods and servers

t12.1Name Contact prediction

t12.2EVfold (Marks et al. 2011,
2012)/EVfold_membrane
(Hopf et al. 2012)

mfDCA/plmDCA Using distance geometry
algorithm (Havel et al. 1983) and
simulated annealing of CNS
(Brünger 2007); http://evfold.org/

t12.3DCA-fold (Sufkowska et al.
2012)

mfDCA Simulated annealing using a
coarse-grained molecular dynamics
for a Cα model

t12.4FRAGFOLD/FILM3 MetaPSICOV Combining fragment-based folding
algorithm (Jones et al. 2005) with
PSICOV (Kosciolek and Jones 2014)
and with MetaPSICOV (Jones et al.
2015).

t12.5FILM3 (Nugent and Jones 2012) is
employed instead of
FRAGFOLD (Jones 2001) for
transmembrane proteins.

t12.6CONFOLD (Adhikari et al.
2015)

EVFOLD/FRAGFOLD
(PSIPRED for 2nd
structures)

Two-stage contact-guided de novo
protein folding, using distance
geometry simulated annealing
protocol in a revised CNS v1.3.

t12.7http://protein.rnet.missouri.edu/
confold/

t12.8Rosetta (Kim et al. 2004;
Ovchinnikov et al. 2016)

GREMLIN Fragment assembly

http://evfold.org/
http://protein.rnet.missouri.edu/confold/
http://protein.rnet.missouri.edu/confold/
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Sulkowska et al. also showed that a simple hybrid method, called DCA-fold, 358

integrating mfDCA-predicted contacts with an accurate knowledge of secondary 359

structure is sufficient to fold proteins in the range of 1–3 Å resolution (Sufkowska 360

et al. 2012). In this study, simulated annealing using a coarse-grained molecular 361

dynamics model was employed for a Cα chain model, in which Cαs interact with 362

each other with a contact potential approximated by a Gaussian function and a 363

torsional potential depending on Cα dihedral angles at each position. 364

Adhikari et al. (2015) studied a way to effectively encode secondary structure 365

information into distance and dihedral angle constrains that complement long-range 366

contact constraints, and revised the CNS v1.3 to effectively use secondary structure 367

constraints together with predicted long-range constraints; CONFOLD (Adhikari 368

et al. 2015) consists of two stages. In the first stage secondary structure information 369

is converted into distance, dihedral angle, and hydrogen bond constraints, and then 370

best models are selected by executing the distance geometry simulated annealing. 371

In the second stage self-conflicting contacts in the best structure predicted in the 372

first stage are removed, constrains based on the secondary structures are refined, 373

and again the distance geometry simulated annealing is executed. 374

Baker group (Ovchinnikov et al. 2016) embedded contact constraints predicted 375

by GREMLIN (Kamisetty et al. 2013) as sigmoidal constraints to overcome noise 376

in the Rosetta (Kim et al. 2004) conformational sampling and refinement. They 377

found that model accuracy will be generally improved, if more than 3 L (protein 378

length) sequences are available, and that large topologically complex proteins can 379

be modeled with close to atomic-level accuracy without knowledge of homologous 380

structures, if there are enough homologous sequences available. 381

On the other hand, a fragment-based folding algorithm FRAGFOLD was com- 382

bined with PSICOV (Kosciolek and Jones 2014) and with MetaPSICOV (Jones 383

et al. 2015; Kosciolek and Jones 2016); In this approach, predicted contacts are 384

converted into additional energy terms for FRAGFOLD in addition to the pairwise 385

potentials of mean force and solvation (Jones et al. 2015; Kosciolek and Jones 386

2016). FILM3 (Nugent and Jones 2012), with constraints based on predicted 387

contacts and ones approximating Z-coordinate values within the lipid membrane, 388

is employed instead of FRAGFOLD for transmembrane proteins. 389

RaptorX (Wang et al. 2017) employed the CNS suite (Brünger 2007) to generate 390

3D models from predicted contacts and secondary structure converted to distance, 391

angle and h-bond restraints, and could yield TMscore >0.6 for 203 of 579 test 392

proteins, while using MetaPSICOV and CCMpred could do so for 79 and 62, 393

respectively. 394
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9.5.1 How Many Predicted Contacts Should Be Used to Build 395

3D Models? 396

The number of feasible contacts surrounding a residue in a protein is about 6.3 397

(Miyazawa and Jernigan 1996), which corresponds to the maximum number of 398

contacts per a protein, 6.3L/2, where L denotes protein length. However, more than 399

50% of known 3D structures in the PDB have less than 2L contacts, and in the test 400

on 15 proteins in EVfold benchmark set, less than 1.6L predicted contacts yielded 401

best results (Adhikari et al. 2015). In the original EVfold, the optimal number 402

of evolutionary constraints was in the order of 0.5L to 0.7L (Hopf et al. 2012). 403

Because prediction accuracy tends to decrease as the rank of contact score increases, 404

and different proteins need different numbers of predicted contacts to be folded 405

well, protein folds were generated with a wide range of the number of predicted 406

contacts, and then best folds were selected; from 30 to L in EVfold (Hopf et al. 407

2012), and from 0.4L to 2.2L in CONFOLD (Adhikari et al. 2015). In RaptorX, the 408

top 2L predicted contacts irrespective of site separation were converted to distance 409

restraints (Wang et al. 2017). On the other hand, Jones group reported (Kosciolek 410

and Jones 2014) that artificially truncating the list of predicted contacts was likely 411

to remove useful information to fold a protein with FRAGFOLD and PSICOV, in 412

which the weight of a given predicted contact is determined by its positive predictive 413

value. 414

9.6 Evolutionary Direct Couplings Between Residues Not 415

Contacting in a Protein 3D Structure 416

Needless to say, evolutionary constraints do not only originate in intra-molecular 417

contacts but also result from inter-molecular contacts/interactions. Even in the case 418

of intra-molecular contacts, if there are structural variations including ones due to 419

conformational changes in a protein family, evolutionary constraints will reflect 420

the alternative conformations (Morcos et al. 2011; Hopf et al. 2012; Anishchenko 421

et al. 2013). Also, intra-molecular residue couplings may contain useful information 422

of ligand-mediated residue couplings (Morcos et al. 2011; Ovchinnikov et al. 423

2016). On the other hand, inter-molecular contacts may allow us to predict protein 424

complexes, and are useful to build protein-protein interaction networks at a residue 425

level. 426

9.6.1 Structural Variation Including Conformational Changes 427

MSA contains information on all members of the protein family, and direct 428

couplings between residues estimated from the MSA reflect the structures of all 429
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members. It was shown (Anishchenko et al. 2013) that 74% of top L/2 direct 430

couplings residue pairs that are more than 5 Å apart in the target structures of 3883 431

proteins are less than 5 Å apart in at least one homolog structure. 432

Conformational change is an interesting case of structural variation. Many pro- 433

teins adopt different conformations as part of their functions (Tokuriki and Tawfik 434

2009), indicating that protein flexibility is as important as structure on biological 435

function. Protein flexibility around the energy minimum can be studied by sampling 436

around the native structure in normal mode/principal component analysis, coarse- 437

grained elastic network model, and short-timescale MD simulations. However, 438

distant conformers that require large conformational transitions are difficult to 439

predict. If conformational changes are essential on protein functions, evolutionary 440

constraints will reflect the multiple conformations. Toth-Petroczy et al. (2016) 441

showed that coevolutionary information may reveal alternative structural states of 442

disorderd regions. 443

Morcos et al. (2011) found that some of top predicted contacts in the response- 444

regulator DNA-binding domain family (GerE, PF00196) conflict with the structure 445

(PDB ID 3C3W) of the full-length response-regulator DosR of M. tuberculosis, but 446

are compatible with the structure (PDB ID 1JE8) of DNA-binding domain of E. coli 447

NarL. 448

Sutto et al. (2015) combined coevolutionary data and molecular dynamics 449

simulations to study protein conformational heterogeneity; the Boltzmann-learning 450

algorithm with �2 regularization terms was employed to extract direct couplings 451

between sites in homologous protein sequences, and a set of conformations con- 452

sistent with the observed residue couplings were generated by exhaustive sampling 453

simulations based on a coarse-grained protein model. Although the most represen- 454

tative structure was consistent with the experimental fold, the various regions of the 455

sequence showed different stability, indicating conformational changes (Sutto et al. 456

2015). 457

Sfriso et al. (2016) made an automated pipeline based on discrete molecular 458

dynamics guided by predicted contacts for the systematic identification of functional 459

conformations in proteins, and identified alternative conformers in 70 of 92 proteins 460

in a validation set of proteins in PDB; various conformational transitions are relevant 461

to those conformers, such as open-closed, rotation, rotation-closed, concerted, and 462

miscellanea of complex motions. 463

9.6.2 Homo-Oligomer Contacts 464

Intra-molecular contacts that conflict with the native fold may indicate homo- 465

oligomer contacts (Anishchenko et al. 2013). Such a case was confirmed for 466

homo-oligomer contacts in the ATPase domain of nitrogen regulatory protein C- 467

like sigma-54 dependent transcriptional activators (Morcos et al. 2011) and between 468

transmembrane helices (Hopf et al. 2012). It was pointed out (Hopf et al. 2012) that 469
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the identification of evolutionary couplings due to homo-oligomerization is not only 470

meaningful in itself but also useful because their removal improves the accuracy of 471

the structure prediction for the monomer. 472

9.6.3 Residue Couplings Mediated by Binding to a Third Agent 473

Direct couplings between residues found by the DCA analysis can be medi- 474

ated (Morcos et al. 2011) by their interactions with a third agent, i.e., ligands, 475

substrates, RNA, DNA, and other metabolites. This indicates that binding sites with 476

such a agent may be found as residue sites directly coupled but not in contact. 477

If interactions with a third agent requires too specific residue type at a certain 478

site, then the residue type will be well conserved at the binding sites. This often 479

occurs, and has been utilized to identify binding sites. However, the interactions for 480

binding are less specific but certainly restricted, direct couplings between residues 481

around the binding sites may occurs. 482

Hopf et al. (2012) devised a total evolutionary coupling score, which is defined 483

as EC values summed over all high-ranking pairs involving a given residue and 484

normalized by their average over all high-ranking pairs, and showed that residues 485

with high total coupling scores line substrate-binding sites and affect signaling or 486

transport in transmembrane proteins, Adrb2 and Opsd. 487

9.7 Heterogeneous Protein-Protein Contacts 488

An application of the direct coupling analysis to predict the structures of protein 489

complexes is straightforward. In place of a MSA of a single protein family, a single 490

MSA that is built by concatenating the multiple MSAs of multiple protein families 491

every species can be employed to extract direct couplings between sites of different 492

proteins by removing indirect intra- and inter-protein couplings (Pazos et al. 1997; 493

Skerker et al. 2008; Weigt et al. 2009; Hopf et al. 2012). 494

A critical requirement for sequences to be concatenated is, however, that 495

respective sets of the protein sequences must have the same evolutionary history 496

to coevolve. In other words, phylogenetic trees built from the respective sets of 497

sequences employed for the protein families must have at least the same topology. 498

One way to build a set of cognate pairs of protein sequences is to employ 499

orthologous sequences for each protein family, the phylogenetic tree of which 500

coincides with that of species. Thus, a genome-wide analysis of finding protein- 501

protein interactions based on protein sequences is not so simple. 502

Weigt et al. (2009) successfully applied the direct coupling analysis to the 503

bacterial two-component signal transduction system consisting of sensor kinase 504

(SK) and response regulator (RR), which are believed (Skerker et al. 2008) to 505

interact specifically with each other in most cases and often revealed by adjacency 506
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in chromosomal location. This analysis is based on the fact that in prokaryotes 507

cognate pairs are often encoded in the same operon. Genome-sequencing projects 508

have revealed that most organisms contain large expansions of a relatively small 509

number of signaling families (Skerker et al. 2008). However, it is not as simple as in 510

prokaryotes to build a set of cognate pairs of those protein sequences in eukaryotes. 511

Hopf et al. (2014) developed a contact score, EVcomplex, for every inter- 512

protein residue pair based on the overall inter-protein EC score distributions, 513

evaluated its performance in blinded tests on 76 complexes of known 3D structure, 514

predicted protein-protein contacts in 32 complexes of unknown structure, and then 515

demonstrated how evolutionary direct couplings can be used to distinguish between 516

interacting and non-interacting protein pairs in a large complex. In their analysis, 517

protein sequence pairs that are encoded close on E. coli genome were employed to 518

reduce incorrect protein pairings. 519

9.8 Discussion 520

Determination of protein structure is essential to understand protein function. 521

However, despite significant effort to explore unknown folds in the protein structural 522

space, protein structures determined by experiment are far less than known protein 523

families. Only about 41–42% of the Pfam families (Finn et al. 2016) (Pfam- 524

A release 31.0, 16712 families) include at least one member whose structure is 525

known. The number and also the size of protein families will further grow as 526

genome/metagenome sequencing projects proceed with next-generation sequencing 527

technologies. Thus, accurate de novo prediction of three-dimensional structure is 528

desirable to catch up with the high growing speed of protein families with unknown 529

folds. Coevolutionary information can be used to predict not only proteins but 530

also RNAs (Weinreb et al. 2016) and those complexes, together with experimental 531

informations such as X-ray, NMR, SAS, FRET, crosslinking, Cryo-EM, and others. 532

Here, statistical methods for disentangling direct from indirect couplings 533

between sites with respect to evolutionary variations/substitutions of amino acids 534

in homologous proteins have been briefly reviewed. Dramatic improvements on 535

contact prediction and successful 3D de novo predictions based on predicted 536

contacts are described in details in the recent reports of CASP-11 (Moult et al. 2016) 537

and CASP-12 meetings (CASP12 2017). Machine learning methods, particularly 538

deep neural network (DNN) such as MetaPSICOV, iFold, and RaptorX, have 539

shown to significantly augment contact prediction accuracy based on coevolutionary 540

information. However, the present state-of-the-art DNN methods are, at least at the 541

very moment, not powerful enough to extract coevolutionary information directly 542

from homologous sequences. It was reported that without coevolutionary strength 543

produced by CCMpred the top L/10 long-range prediction accuracy of RaptorX 544

might drop by 0.15 for soluble proteins and more for membrane proteins (Wang 545

et al. 2017), indicating that the direct coupling analysis is still essential for contact 546

prediction. 547
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The primary requirement for the direct coupling analysis is a high quality 548

deep alignment. However, genome/metagenome sequencing projects provide more 549

genetic variations from which more accurate and more comprehensive information 550

on evolutionary constraints can be extracted. One of problems is that species being 551

sequenced may be strongly biased to prokaryotes, making it hard to analyze eukary- 552

otic proteins based on coevolutionary substitutions. Experiments of vitro evolution 553

may be useful to provide sequence variations for eukaryotic proteins (Ovchinnikov 554

et al. 2016). 555

For a large-scale of protein structure prediction, computationally intensive meth- 556

ods such as the ACE and Boltzmann machine (MCMC and mpDCA) can hardly 557

be employed. The Gaussian approximation with a normal-inverse-Wishart prior, the 558

Gaussian approximations with other priors (PSICOV) and mean field approximation 559

(mfDCA) are fast enough but their performance of contact prediction tends to 560

be compared unfavorably with the pseudo-likelihood approximation (plmDCA), 561

indicating that they may be inappropriate for proteins with sparse couplings. 562

The accurate estimates of fields and couplings are very informative in evaluating 563

the effects (
HPotts) of mutations (Hopf et al. 2017), identifying protein family 564

members and also studying folding mechanisms (Morcos et al. 2014; Jacquin et al. 565

2016) and protein evolution (Miyazawa 2017b). It should be also examined whether 566

the distribution of dimensionless energies (HPotts) over homologous proteins can be 567

well reproduced. Accuracy of estimates of fields and couplings and the distribution 568

of dimensionless energies depends on regularization parameters or the ratio of 569

pseudocount (Barton et al. 2016; Miyazawa 2017b), and therefore they should be 570

optimized. It was also pointed out that group L1 regularization performs better 571

than L2 for the maximum pseudolikelihood method (Ingraham and Marks 2016). 572

The ACE algorithm, which can be applied only for systems of sparse couplings, 573

may be moer favorable with respect to computational load for the estimation of 574

fields and couplings than Boltzmann learning with Monte Carlo simulation or 575

with message passing. However, both the methods are computationally intensive. 576

Recently, another approach consisting of two methods named persistent-vi and 577

Fadeout, in which the posterior probability density with horseshoe prior is approx- 578

imately estimated by using variational inference and noncentered parameterization 579

for such a sparsity-inducing prior, has shown to perform better with twofold 580

cpu time than the maximum pseudolikelihood method with L2 and group L1 581

regularizations (Ingraham and Marks 2016). 582

The remarkable advances of sequencing technologies and also statistical methods 583

are likely to bring many targets within range of the present approach in the near 584

future, and have a potential to transform the field (Moult et al. 2016). 585

Appendix 586

An appendix described in full will be found in the article (Miyazawa 2017a) 587

submitted to the arXiv. 588

Sanzo Miyazawa
more

Sanzo Miyazawa
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Inverse Potts Model 589

A Gauge Employed for hi(ak) and Jij (ak, al) 590

Unless specified, a following gauge is employed; we call it q-gauge, here. 591

hi(aq) = Jij (ak, aq) = Jij (aq, al) = 0 (9.16)

In this gauge, the amino acid aq is the reference state for fields and couplings, 592

and Pi(aq), Pij (ak, aq) = Pji(aq, ak), and Pij (aq, aq) are regarded as dependent 593

variables. Common choices for the reference state aq are the most common 594

(consensus) state at each site. Any gauge can be transformed to another by the 595

following transformation. 596

J I
ij (ak, al) ≡ Jij (ak, al) − Jij (·, al) − Jij (ak, ·) + Jij (·, ·) (9.17)

hI
i (ak) ≡ hi(ak) − hi(·) +

∑

j �=i

(Jij (ak, ·) − Jij (·, ·)) (9.18)

where “·” denotes the reference state, which may be aq for each site (q-gauge) or 597

the average over all states (Ising gauge). 598

Boltzmann Machine 599

Fields hi(ak) and couplings Jij (ak, al) are estimated by iterating the following 2- 600

step procedures. 601

1. For a given set of hi and Jij (ak, al), marginal probabilities, P MC(σi = ak) 602

and P MC(σi = ak,σi = al), are estimated by a Markov chain Monte Carlo 603

method (the Metropolis-Hastings algorithm (Metropolis et al. 1953)) or by any 604

other method (for example, the message passing algorithm (Weigt et al. 2009)). 605

2. Then, hi and Jij (ak, al) are updated according to the gradient of negative log- 606

posterior-probability per instance, ∂S0/∂hi(ak) or ∂S0/∂Jij (ak, al), multiplied 607

by a parameter-specific weight factor (Barton et al. 2016), wi(ak) or wij (ak, al); 608

see Eqs. 9.8 and 9.12. 609


hi(ak) = −(P MC(σi = ak) + ∂R

∂hi(ak)
− Pi(ak)) · wi(ak) (9.19)


Jij (ak, al) = −(P MC(σi = ak,σi = al) + ∂R

∂Jij (ak, al)

− Pij (ak, al)) · wij (ak, al) (9.20)

610
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where weights are also updated as wi(ak) ← f (wi(ak)) and wij (ak, al) ← 611

f (wij (ak, al)) according to the RPROP (Riedmiller and Braun 1993) algorithm; 612

the function f (w) is defined as 613

f (w) ≡
{

max(w · s−, wmin) if the gradient changes its sign,

min(w · s+, wmax) otherwise
(9.21)

wmin = 10−3, wmax = 10, s− = 0.5, and s+ = 1.9 < 1/s− were 614

employed (Barton et al. 2016). After updated, hi(ak) and Jij (ak, al) may be 615

modified to satisfy a given gauge. 616

The Boltzmann machine has a merit that model correlations are calculated. 617

Gaussian Approximation for P(σ) with a Normal-Inverse-Wishart Prior 618

The normal-inverse-Wishart distribution (NIW) is the product of the multivariate 619

normal distribution (N ) and the inverse-Wishart distribution (W−1), which are 620

the conjugate priors for the mean vector and for the covariance matrix of a 621

multivariate Gaussian distribution, respectively. The NIW is employed as a prior 622

in GaussDCA (Baldassi et al. 2014), in which the sequence distribution P(σ) 623

is approximated as a Gaussian distribution. In this approximation, the q-gauge 624

is used, and Pi(aq), Pij (ak, aq) = Pji(aq, ak), and Pij (aq, aq) are regarded as 625

dependent variables; see section “A Gauge Employed for hi(ak) and Jij (ak, al)”; in 626

GaussDCA, deletion is excluded from independent variables. 627

The posterior distribution for the NIW is also a NIW. Thus, the cross entropy S0 628

can be represented as 629

S0(μ, �|{Pi}, {Pij })= −1

B
log[

B∏

τ=1

N ({δστ
i ak

}|μ, �)N (μ|μ0, �/κ)W−1(�|
, v)]
(9.22)

= −1

B
log[N (μ|μB,�/κB)W−1(�|
B, vB) (9.23)

(det(2π�))−B/2(
κ

κB
)dim �/2 (det(
/2))v/2

(det(
B/2))v
B/2

�dim �(vB/2)

�dim �(v/2)
(det �)−(ν−vB)2]

(9.24)

where �dim �(v/2) is the multivariate � function, μ is the mean vector, and dim � 630

is the dimension of covariance matrix �, dim � = (q − 1)L excluding deletion in 631

GaussDCA. The normal and NIW distributions are defined as follows. 632

N (μ|μ0, �) ≡ (det(2π�))−1/2 exp(− (μ − μ0)T �−1(μ − μ0)

2
) (9.25)
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W−1(�|
, v) ≡ (det(
/2))v/2

�dim �(v/2)
(det �)−(v+dim �+1)/2 exp(−1

2
Tr
�−1) (9.26)

Parameters μB , κB , vB , and 
B satisfy 633

μB
i (ak) = (κμ0

i (ak) + BPi(ak))/(κ + B) , κB = κ + B , vB = v + B

(9.27)


B
ij (ak, al) = 
ij (ak, al) + BCij (ak, al)

+ κB

κ + B
[(Pi(ak) − μ0

i (ak))(Pj (al) − μ0
j (al))] (9.28)

where the 
 and v are the scale matrix and the degree of freedom, respectively, 634

shaping the inverse-Wishart distribution, and C is the given covariance matrix; 635

Cij (ak, al) ≡ Pij (ak, al) − Pi(ak)Pi(al). The mean values of μ and � under NW 636

posterior are μB and 
B/(vB − dim � − 1), and their mode values are μB and 637


B/(vB +dim � +1), which minimize the cross entropy or maximize the posterior 638

probability. The covariance matrix � can be estimated to be the exactly same value 639

by adjusting the value of ν, whichever the mean posterior or the maximum posterior 640

is employed for the estimation of �. In GaussDCA, the mean posterior estimate 641

was employed but here the maximum posterior estimate is employed according to 642

the present formalism. 643

(μ, �) = arg min
(μ,�)

S0(μ, �|{Pi}, {Pij }) = (μB,
B/(vB + dim � + 1)) (9.29)

According to GaussDCA, v is chosen in such a way that �ij (ak, al) is nearly 644

equal to the covariance matrix corrected by pseudocount; v = κ +dim � +1 for the 645

mean posterior estimate in GaussDCA, but v = κ − dim � − 1 for the maximum 646

posterior estimate here. 647

From Eq. 9.15, the estimates of couplings and fields are calculated. 648

J NIW
ij (ak, al) = −∂S0({Pi}, {Pij })

∂Pij (ak, al)
= − (κ + B + 1)

κ + B
(�−1)ij (ak, al) (9.30)

Because the number of instances is far greater than 1 (B � 1), these estimates of 649

couplings are practically equal to the estimates (J MF = −�−1) in the mean field 650

approximation, which was employed in GaussDCA (Baldassi et al. 2014). 651

hNIW
i (ak) = −

∑

j �=i

∑

l

J NIW
ij (ak, al)Pj (al) − (κ + B + 1)

κ + B

∑

j

∑

l �=q

(�−1)ij (ak, al)

[δij

δkl − 2Pi(al)

2
+ κB

κ + B
(Pj (al) − μ0

j (al))] (9.31)
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The (hNIW
i (ak) − hNIW

i (aq)) does not converge to log Pi(ak)/Pi(aq) as J NIW → 0 652

but hMF
i (ak) − hMF

i (aq) does; in other words, the mean field approximation gives 653

a better h for the limiting case of no couplings than the present approximation. 654

Barton et al. (2016) reported that the Gaussian approximation generally gave a better 655

generative model than the mean field approximation. 656

In GaussDCA (Baldassi et al. 2014), μ0 and 
/κ were chosen to be as 657

uninformative as possible, i.e., mean and covariance for a uniform distribution. 658

μ0
i (ak) = 1/q,


ij (ak, al)

κ
= δij

q
(δkl − 1

q
) (9.32)

Pseudo-likelihood Approximation 659

Symmetric Pseudo-likelihood Maximization 660

The probability of an instance στ is approximated as follows by the product of 661

conditional probabilities of observing στ
i under the given observations στ

j �=i of all 662

other sites. 663

P(στ) ≈
∏

i

P (σi = στ
i |{σj �=i = στ

j }) (9.33)

Then, cross entropy is approximated as 664

S0(h, J |{Pi}, {Pij }) ≈ SPLM
0 (h, J |{Pi}, {Pij }) ≡

∑

i

S0,i (h, J |{Pi}, {Pij })
(9.34)

S0,i (h, J |{Pi}, {Pij }) ≡ −1

B

∑

τ

�i(σi = στ
i |{σj �=i = στ

j }, h, J ) + Ri(h, J )

(9.35)

where conditional log-likelihoods and �2 norm regularization terms employed in 665

Ekeberg et al. (2013) are 666

�i(σi = στ
i |{σj �=i = στ

j }, h, J ) = log[ exp(hi(σ
τ
i ) + ∑

j �=i Jij (σ
τ
i ,σ

τ
j ))∑

k exp(hi(ak) + ∑
j �=i Jij (ak,σ

τ
j ))

]
(9.36)

667

Ri(h, J ) ≡ γh

∑

k

hi(ak)
2 + γJ

2

∑

k

∑

j �=i

∑

l

Jij (ak, al)
2 (9.37)
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The optimum fields and couplings in this approximation are estimated by minimiz- 668

ing the pseudo-cross-entropy, SPLM
0 . 669

(hPLM, J PLM) = arg min
h,J

SPLM
0 (h, J |{Pi}, {Pij }) (9.38)

Equation 9.38 is not invariant under gauge transformation; the �2 norm reg- 670

ularization terms in Eq. 9.38 favors only a specific gauge that corresponds to 671

γJ

∑
l Jij (ak, al) = γhhi(ak), γJ

∑
k Jij (ak, al) = γhhj (al), and

∑
k hi(ak) = 0 672

for all i, j (> i), k and l (Ekeberg et al. 2013). γJ = γh = 0.01 that is relatively 673

a large value independent of B was employed in Ekeberg et al. (2013). γh = 0.01 674

but γJ = q(L − 1)γh were employed in Hopf et al. (2017), in which gapped sites 675

in each sequence were excluded in the calculation of the Hamiltonian H(σ), and 676

therefore q = 20. 677

GREMLIN (Kamisetty et al. 2013) employs Gaussian prior probabilities that 678

depend on site pairs. 679

Ri(h, J ) ≡ γh

∑

k

hi(ak)
2 +

∑

k

∑

j �=i

γij

2

∑

l

Jij (ak, al)
2 (9.39)

γij ≡ γc(1 − γp log(P 0
ij )) (9.40)

where P 0
ij is the prior probability of site pair (i, j) being in contact. 680

Asymmetric Pseudo-likelihood Maximization 681

To speed up the minimization of S0, a further approximation, in which S0,i is 682

separately minimized, is employed (Ekeberg et al. 2014), and fields and couplings 683

are estimated as follows. 684

J PLM
ij (ak, al) � 1

2
(J ∗

ij (ak, al) + J ∗
j i(al, ak)) (9.41)

(hPLM
i , J ∗

i ) = arg min
hi ,Ji

S0,i (h, J |{Pi}, {Pij }) (9.42)

It is appropriate to transform h and J estimated above into a some specific gauge 685

such as the Ising gauge. 686

ACE (Adaptive Cluster Expansion) of Cross-Entropy for Sparse Markov 687

Random Field 688

The cross entropy S0({hi, Jij }|{Pi}, {Pij }, i, j ∈ �) of a cluster of sites �, which 689

is defined as the negative log-likelihood per instance in Eq. 9.14, is approximately 690

minimized by taking account of sets Lk(t) of only significant clusters consisting of 691
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k sites, the incremental entropy (cluster cross entropy) 
S� of which is significant 692

(|
S�| > t) (Cocco and Monasson 2011, 2012; Barton et al. 2016). 693

S0({Pi, Pij |i, j ∈ �}) �
|�|∑

l=1

,
∑

�′∈Ll(t),�
′⊂�


S0({Pi, Pij |i, j ∈ �′}) (9.43)


S0({Pi, Pij |i, j ∈ �}) ≡ S0({Pi, Pij |i, j ∈ �}) −
∑

�′⊂�


S0({Pi, Pij |i, j ∈ �′})

(9.44)

=
∑

�′⊆�

(−1)|�| − |�′| S0({Pi, Pij |i, j ∈ �′}) (9.45)

Lk+1(t) is constructed from Lk(t) by adding a cluster � consisting of (k+1) sites in 694

a lax case provided that any pair of size k clusters �1, �2 ∈ Lk(t) and �1 ∪ �2 = � 695

or in a strict case if �′ ∈ Lk(t) for ∀�′ such that �′ ⊂ � and |�′| = k. Thus, 696

Eq. 9.43 yields sparse solutions. The cross entropies S0({Pi, Pij |i, j ∈ �′}) for the 697

small size of clusters are estimated by minimizing S0({hi, Jij }|{Pi, Pij }, i, j ∈ �′) 698

with respect to fields and couplings. Starting from a large value of the threshold t 699

(typically t = 1), the cross-entropy S0({Pi, Pij }|i, j ∈ {1, . . . , N}) is calculated 700

by gradually decreasing t until its value converges. Convergence of the algorithm 701

may also be more difficult for alignments of long proteins or those with very strong 702

interactions. In such cases, strong regularization may be employed. 703

The following regularization terms of �2 norm are employed in ACE (Barton 704

et al. 2016), and so Eq. 9.43 is not invariant under gauge transformation. 705

− 1

B
log P0(h, J |i, j ∈ �) = γh

∑

i∈�

∑

k

hi(ak)
2+γJ

∑

i∈�

∑

k

∑

J>i,j∈�

∑

l

Jij (ak, al)
2

(9.46)
γh = γJ ∝ 1/B was employed (Barton et al. 2016). 706

The compression of the number of Potts states, qi ≤ q, at each site can be 707

taken into account. All infrequently observed states or states that insignificantly 708

contribute to site entropy can be treated as the same state, and a complete model can 709

be recovered (Barton et al. 2016) by setting hi(ak) = hi(ak′)+ log(Pi(ak)/P
′
i (ak′)), 710

and Jij (ak, al) = J ′
ij (ak′ , al′), where “′” denotes a corresponding aggregated state 711

and a potential. 712

Starting from the output set of the fields hi(ak) and couplings Jij (ak, al) obtained 713

from the cluster expansion of the cross-entropy, a Boltzmann machine is trained 714

with Pi(ak) and Pij (ak) by the RPROP algorithm (Riedmiller and Braun 1993) 715

to refine the parameter values of hi and Jij (ak, al) (Barton et al. 2016); see 716

section “Boltzmann Machine”. This post-processing is also useful because model 717

correlations are calculated. 718

An appropriate value of the regularization parameter for trypsin inhibitor were 719

much larger (γ = 1) for contact prediction than those (γ = 2/B = 10−3) for 720
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recovering true fields and couplings (Barton et al. 2016), probably because the task 721

of contact prediction requires the relative ranking of interactions rather than their 722

actual values. 723

Scoring Methods for Contact Prediction 724

Corrected Frobenius Norm (L22 Matrix Norm), SCFN
ij 725

For scoring, plmDCA (Ekeberg et al. 2013, 2014) employs the corrected Frobenius 726

norm of J I
ij transformed in the Ising gauge, in which J I

ij does not contain anything 727

that could have been explained by fields hi and hj ; J I
ij (ak, al) ≡ Jij (ak, al) − 728

Jij (·, al) − Jij (ak, ·) + Jij (·, ·) where Jij (·, al) = Jji(al, ·) ≡ ∑q

k=1 Jij (ak, al)/q. 729

SCFN
ij ≡ SFN

ij − SFN·j SFN
i· /SFN·· , SFN

ij ≡
√ ∑

κ �=gap

∑

l �=gap

J I
ij (ak, al)2 (9.47)

where “·” denotes average over the indicated variable. This CFN score with the gap 730

state excluded in Eq. 9.47 performs better (Ekeberg et al. 2014; Baldassi et al. 2014) 731

than both scores of FN and DI/EC (Weigt et al. 2009; Morcos et al. 2011; Marks 732

et al. 2011; Hopf et al. 2012). 733
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