Errata

for
"Prediction of contact residue pairs based on co-substitution between sites in protein structures",

PLoS One, 8, e54252, 2013,
doi:10.1371/journal.pone. 0054252

Sanzo Miyazawa

Graduate School of Engineering, Gunma University
Kiryu, Gunma 376-8515, Japan
E-Mail: sanzo.miyazawa@gmail.com
(August 27, 2013)

1. Eqs. 3 and 4 on page 2,

$$
\begin{gather*}
P\left(\mathcal{A}_{i} \mid T, \Theta, \theta_{\alpha}\right)=\sum_{\kappa} \sum_{\lambda} P\left(\mathcal{A}_{i} \mid v_{b L}=\kappa, v_{b R}=\lambda, T, \Theta, \theta_{\alpha}\right) \tag{3}\\
P\left(\mathcal{A}_{i} \mid v_{b L}=\kappa, v_{b R}=\lambda, T, \Theta, \theta_{\alpha}\right) \equiv \\
P_{b L}\left(\mathcal{A}_{i} \mid v_{b L}=\kappa, T, \Theta, \theta_{\alpha}\right) f_{\kappa} P\left(\lambda \mid \kappa, t_{b}, \Theta, \theta_{\alpha}\right) P_{b R}\left(\mathcal{A}_{i} \mid v_{b R}=\lambda, T, \Theta, \theta_{\alpha}\right) \tag{4}
\end{gather*}
$$

and Eq. 6 on page 3,

$$
\begin{equation*}
\Delta_{i b}\left(\mathcal{A}_{i}, \hat{T}, \hat{\Theta}, \theta_{\alpha}\right) \equiv \sum_{\kappa, \lambda} \frac{\Delta_{\kappa, \lambda} P\left(\mathcal{A}_{i} \mid v_{b L}=\kappa, v_{b R}=\lambda, \hat{T}, \hat{\Theta}, \theta_{\alpha}\right)}{P\left(\mathcal{A}_{i} \mid \hat{T}, \hat{\Theta}, \theta_{\alpha}\right)} \tag{6}
\end{equation*}
$$

should be

$$
\begin{gather*}
P\left(\mathcal{A}_{i} \mid T, \Theta, \theta_{\alpha}\right)=\sum_{\kappa} \sum_{\lambda} P\left(\mathcal{A}_{i}, v_{b L}=\kappa, v_{b R}=\lambda \mid T, \Theta, \theta_{\alpha}\right) \tag{3}\\
P\left(\mathcal{A}_{i}, v_{b L}=\kappa, v_{b R}=\lambda \mid T, \Theta, \theta_{\alpha}\right)= \\
P_{b L}\left(\mathcal{A}_{i} \mid v_{b L}=\kappa, T, \Theta, \theta_{\alpha}\right) f_{\kappa} P\left(\lambda \mid \kappa, t_{b}, \Theta, \theta_{\alpha}\right) P_{b R}\left(\mathcal{A}_{i} \mid v_{b R}=\lambda, T, \Theta, \theta_{\alpha}\right) \tag{4}
\end{gather*}
$$

and

$$
\begin{equation*}
\Delta_{i b}\left(\mathcal{A}_{i}, \hat{T}, \hat{\Theta}, \theta_{\alpha}\right) \equiv \sum_{\kappa, \lambda} \frac{\Delta_{\kappa, \lambda} P\left(\mathcal{A}_{i}, v_{b L}=\kappa, v_{b R}=\lambda \mid \hat{T}, \hat{\Theta}, \theta_{\alpha}\right)}{P\left(\mathcal{A}_{i} \mid \hat{T}, \hat{\Theta}, \theta_{\alpha}\right)} \tag{6}
\end{equation*}
$$

2. Figure 1 should be replaced by the figure shown on the next page; the edge of the lefthand side in the original is too much trimmed by one character.

Branch lengths: by a ML method in a mechanistic codon substitution model

Correlation coefficient matrix of feature vectors between sites:

$$
C_{i j} \equiv r_{\Delta_{i} \Delta_{j}}=\frac{\left(\boldsymbol{\Delta}_{i}, \boldsymbol{\Delta}_{j}\right)}{\left\|\boldsymbol{\Delta}_{i}\right\|\left\|\boldsymbol{\Delta}_{j}\right\|}
$$

Partial correlation coefficients of feature vectors between sites:

$$
\mathcal{C}_{i j} \equiv \frac{\left(\Pi_{\perp\left\{\Delta_{k \neq i, j}\right\}} \Delta_{i}, \Pi_{\perp\left\{\Delta_{k \neq i, j}\right\}} \Delta_{j}\right)}{\left\|\Pi_{\perp\left\{\Delta_{k \neq i, j}\right\}} \Delta_{i}\right\|\left\|\Pi_{\perp\left\{\Delta_{k \neq i, j}\right\}} \Delta_{j}\right\|}=-\frac{\left(C^{-1}\right)_{i j}}{\left(\left(C^{-1}\right)_{i i}\left(C^{-1}\right)_{j j}\right)^{1 / 2}}
$$

Co-evolution score based on partial correlation coefficients:

$$
\begin{aligned}
& \rho_{i j} \equiv \max \left[\rho_{i j}^{s}, \max \left(-\rho_{i j}^{v}, 0\right), \max \left(-\rho_{i j}^{c}, 0\right), \max \left(-\rho_{i j}^{h b}, 0\right),\left|\rho_{i j}^{h}\right|, \ldots\right] \\
& \rho_{i j}^{s} \equiv \max \left(\mathcal{C}_{i j}^{s}, 0\right), \rho_{i j}^{x} \equiv \operatorname{sgn} \mathcal{C}_{i j}^{x}\left(\left|\rho_{i j}^{s} \mathcal{C}_{i j}^{x}\right|\right)^{1 / 2} \quad(x \in\{v, c, h b, h, \ldots\})
\end{aligned}
$$

