補足

アミノ酸座位間における共進化に基づく残基間コンタクト予測: タンパク質立体構造予測にむけて

宮澤 三造 sanzo.miyazawa@gmail.com

03/11/2014

図 1. 共進化座位対と残基間コンタクト.

以下のタンパク質に関し、CES ¹⁰とNMFI-DI ²法で 真の残基間コンタクト数の1/3に等しい数の残基対を残基 間コンタクトとして予測した結果を、 α , β , $\alpha + \beta \geq \alpha/\beta \equiv \tau - \mu$ ドの各タンパク質毎に、各々左下図と右上図に、真陽 性(TP)を赤で偽陽性(FP)は藍色で示す. 図中、灰色で示された残基対は残基間コンタクトで、残基間での重原子の最 小距離が 5 Å以下の 近接残基対でかつ 6残基以上隔たった残基対 (|i - j| > 5)である. NMFI-DI法では, conservation filter ²)のみを用いた. 文献 ¹⁰の図を改変.

Pfam ID / PDB ID	N^*	#contacts	${ m TP}^{\dagger}$	$PPV^{\dagger\dagger}$		$PPV^{\dagger\dagger}$		Remarks
		$/\#sites^{**}$	+FP	$C_{ij}^{\mathrm{s}\ddagger}$	$\mathcal{C}_{ij}^{\mathrm{s}}{}^{\ddagger\ddagger}$	$\rho_{ij}{}^{\S}$	$\mathrm{DI}^{\S\S}$	
α proteins								
Trans_reg_C / 10DD-A:156-232	7720	111/76	37	0.189	$\ll 0.541$	0.622	0.432	Transcriptional regulatory protein, C terminal
CH / 1BKR-A:5-107	2960	172/101	57	0.053	$\ll 0.439$	0.491	0.439	Calponin homology domain
7tm_1 / 1GZM-A:54-306	6302	372/248	124	0.008	$\ll 0.290$	0.306	0.169	Rhodopsin-like receptors
β proteins								
SH3_1 / 2HDA-A:97-144	4160	89/48	29	0.241	$\ll 0.621$	0.655	0.552	SRC Homology 3 (SH3) domain
Cadherin / 2O72-A:113-212	7617	220/91	73	0.274	$\ll 0.726$	0.767	0.753	Cadherin
Trypsin / 3TGI-E:16-238	6688	636/212	212	0.344	$\ll 0.575$	0.613	0.533	Trypsin
$\alpha + \beta$ proteins								
Kunitz_BPTI / 5PTI-A:4-56	2130	111/53	37	0.216	$\ll 0.514$	0.486	0.541	Kunitz domain
KH_1 / 1WVN-A:7-69	5114	90/57	30	0.367	$\ll 0.600$	0.700	0.533	K Homology (KH) domain
RRM_1 / 1G2E-A:41-111	7684	133/70	44	0.295	$\ll 0.795$	0.795	0.705	RNA recognition motif
FKBP_C / 1R9H-A:26-118	5695	200/92	66	0.197	$\ll 0.667$	0.727	0.697	FK506 binding protein (FKBP)
Lectin_C / 1SL5-A:273-379	4479	246/103	82	0.171	$\ll 0.585$	0.646	0.671	C-type lectin
α/β proteins								
Thioredoxin / 1RQM-A:1-103	7483	188/99	62	0.177	$\ll 0.581$	0.645	0.565	Thioredoxin
Response_reg / $1E6K-A:8-121$	7613	202/110	67	0.015	$\ll 0.657$	0.687	0.642	Response regulator receiver domain
RNase_H / 1F21-A:3-142	4782	273/128	91	0.132	$\ll 0.407$	0.407	0.549	RNase H
Ras / 5P21-A:5-165	6390	335/159	111	0.207	$\ll 0.640$	0.685	0.631	Ras subfamily

文献¹⁰⁾の表を改変.

- * 使用した相同配列の数. Pfam におけるFull alignmentから, Pfam系統樹において一定の閾値以下の短い 枝長で分岐している配列は削除.
- ** 残基間コンタクト数/座位数. 残基間コンタクトの定義は残基間での重原子の最小距離が 5 Å以下で かつ 6残基以上隔たった残基対(|*i j*| > 5)である.
- †予測した残基間コンタクトの数(真の残基間コンタクト数の1/3).
- ^{††} Positive predictive values (PPV = TP/(TP + FP))の値.
- * 置換確率ベクトル間の相関係数による予測. 両末端座位は除外.
- ^{‡‡} 置換確率ベクトル間の偏相関係数による予測. 両末端座位は除外.
- § CES法による予測;太字はDI法より高い精度を示す.
- ^{§§} NMFI-DI(DCA)法による予測; conservation filter ²⁾を用いた.

β proteins

, İ. . .

50 -

;

huulu

ð

۰.

...t

прп

Response_reg

文献

- Morcos, F., Pagnani, A., Lunt, B., Bertolino, A., Marks, D.S., Sander, C., Zecchina, R., Onuchic, J.N., Hwa, T., Weigt, M.: Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc. Natl. Acad. Sci. USA 108, 1293–1301 (2011). doi:10.1073/pnas.1111471108
- 2) Marks, D.S., Colwell, L.J., Sheridan, R., Hopf, T.A., Pagnani, A., Zecchina, R., Sander, C.: Protein 3D structure computed from evolutionary sequence variation. PLoS ONE 6(12), 28766 (2011). doi:10.1371/journal.pone.0028766
- 3) Taylor, W.R., Sadowski, M.I.: Structural constraints on the covariance matrix derived from multiple aligned protein sequences. PLoS ONE 6(12), 28265 (2011). doi:10.1371/journal.pone.0028265
- 4) Hopf, T.A., Colwell, L.J., Sheridan, R., Rost, B., Sander, C., Marks, D.S.: Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607–1621 (2012). doi:10.1016/j.cell.2012.04.012
- Marks, D.S., Hopf, T.A., Sander, C.: Protein structure prediction from sequence variation. Nature Biotech. 30, 1072–1080 (2012). doi:10.1038/nbt.2419
- 6) Sułkowska, J.I., Morcos, F., Weigt, M., Hwa, T., Onuchic, J.N.: Genomics-aided structure prediction. Proc. Natl. Acad. Sci. USA 109, 10340–10345 (2012). doi:10.1073/pnas.1207864109
- 7) Nugent, T., Jones, D.T.: Accurate de novo structure prediction of large transmembrane protein domains using fragmentassembly and correlated mutation analysis. Proc. Natl. Acad. Sci. USA 109, 1540–1547 (2012). doi:10.1073/pnas.1120036109
- 8) Jones, D.T., Buchan, D.W.A., Cozzetto, D., Pontil, M.: Psicov: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Bioinformatics 28, 184–190 (2012). doi:10.1093/bioinformatics/btr638
- 9) Ekeberg, M., Lövkvist, C., Lan, Y., Weigt, M., Aurell, E.: Improved contact prediction in proteins: Using pseudolikelihoods to infer potts models. Phys. Rev. E 87, 012707–116 (2013). doi:10.1103/PhysRevE.87.012707
- Miyazawa, S.: Advantages of a mechanistic codon substitution model for evolutionary analysis of protein-coding sequences. PLoS ONE 6(12), 28892 (2011). doi:10.1371/journal.pone.0028892

Miyazawa, S.: Superiority of a mechanistic codon substitution model even for protein sequences in phylogenetic analysis. BMC Evol. Biol. **13**, 257 (2013). doi:10.1186/1471-2148-13-257

- 11) Schneidman, E., Berry II, M.J., Segev, R., Bialek, W.: Weak pairwise correlations imply strongly correlated network states in a neural population. Nature **440**, 1007–1012 (2006). doi:10.1038/nature04701
- 12) Weigt, M., White, R.A., Szurmant, H., Hoch, J.A., Hwa, T.: Identification of direct residue contacts in protein-protein interaction by message passing. Proc. Natl. Acad. Sci. USA 106, 67–72 (2009). doi:10.1073/pnas.0805923106
- Kappen, H.J., Rodríguez, F.B.: Efficient learning in boltzmann machines using linear response theory. Neural Computation 10, 1137–1156 (1998). doi:10.1162/089976698300017386