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S.1 Methods

S.1.1 The Inverse Potts model for protein homologous
sequences

Let us consider probability distributions P(σ) of amino acid se-
quences σ(≡ (σ1, . . . , σL)), which satisfy the following constraints
that single-site and two-site marginal probabilities must be equal
to a given frequency Pi(ak) of amino acid ak at each site i and a
given frequency Pi j(ak, al) of amino acid pair (ak, al) for site pair
(i, j), respectively.

P(σi = ak) ≡
∑
σ

P(σ)δσiak = Pi(ak) (S1)

P(σi = ak, σ j = al) ≡
∑
σ

P(σ)δσiakδσ jal = Pi j(ak, al) (S2)

where σi, ak ∈ {amino acids, deletion} k = 1, . . . , q, q ≡

|{amino acids, deletion}| = 21, i, j = 1, . . . , L, and δσiak is the
Kronecker delta. The sequence distribution P(σ|h, J) with the
maximum entropy can be represented as

P(σ|h, J) =
1

Zσ
e−ψN (σ|h,J) , Zσ =

∑
σ

e−ψN (σ|h,J) (S3)

ψN(σ|h, J) = − [
∑

i

{ hi(σi) +
∑
j(>i)

Ji j(σi, σ j) } ] (S4)

where Lagrange multipliers hi(ak) and Ji j(ak, al) are interaction
potentials called fields and couplings, and ψN(σ|h, J) is referred to
here as evolutionary energy.

Fields hi(ak) and couplings Ji j(ak, al) provide useful infor-
mation to understand protein evolution [16] and also to predict
residue-residue contacts in protein structures on the basis of
coevolutional residue substitutions [1], [2], [8], [71].

For given single-site Pi(ak) and two-site frequencies Pi j(ak, al),
which are evaluated from a multiple sequence alignment, inferring
hi(ak) and Ji j(ak, al) have been attempted as the Inverse Potts prob-
lem by the Boltzmann machine learning [14], [22], by the mean
field approximation [1], [2], [8], by the Gaussian approximation
[72], by maximizing a pseudo-likelihood [10], [11], [68], [73], and
by minimizing a cross entropy in the adaptive cluster expansion
[12].

S.1.2 The sample average of evolutionary energy

According to the Potts model, the sample average of ψN(σN) over
natural sequences, σN , fixed in protein evolution is equal to the
ensemble average of ψN(σ) over sequences, σ. Sample averages
are calculated with a sample weight wσN for each homologous
sequence, which is used to reduce phylogenetic biases in the set
of homologous sequences; for example, the sample average of
evolutionary energy is calculated as follows.

ψN(σN) ≡

∑
σN

wσNψN(σN)∑
σN

wσN

(S5)

= 〈ψN(σ)〉σ (S6)

where ψN(σN) denotes a sample average of ψN(σN) with a sample
weight wσN for each homologous sequence σN , and 〈ψN(σ)〉σ is
the ensemble average of ψN(σ) that obeys a Boltzmann distribu-
tion.

S.1.3 Ensemble average by a Gaussian Approximation for
the distribution of the evolutionary energies of random
sequences

The ensemble average over sequences, for example, of ψN(σ) is
estimated by the Gaussian approximation [16], [53], in which the
distribution of the evolutionary energies of random sequences is
approximated as a Gaussian distribution, N(ψ̄, δψ2). The mean ψ̄
and variance δψ2 are evaluated as those of evolutionary energies of
random sequences whose amino acid composition is equal to the
average amino acid composition of sequences in a protein family.

〈ψN(σ)〉σ ≡ [
∑
σ

ψN(σ) exp(−ψN(σ)) ] /Zσ (S7)

≈

∫
ψN exp(−ψN))N(ψ̄, δψ2) dψN∫

exp(−ψN)N(ψ̄, δψ2) dψN
(S8)

= ψ̄( f (σN)) − δψ2( f (σN)) (S9)

where f (σN) is the sample-average amino acid composition of
natural sequences in a protein family.

S.1.4 Relationships between evolutionary energy ψN(σ),
fitness m(σ), and folding free energy ∆GND(σ) of protein σ
[16]

In [16], it was proved by assuming the detailed balance principle
that the equilibrium distribution of protein sequences must be the
Boltzmann distribution of their Malthusian fitness m as well as that
of ∆ψND. On the other hand, a protein folding theory [50], [51],
[52], [53] based on a random energy model (REM) indicates that it
can be approximated to the Boltzmann distribution of the folding
free energy divided by selective temperature, ∆GND/(kBTs).

Peq(µ) =
Pmut(µ) exp(4Nem(µ)(1 − qm))∑
ν Pmut(ν) exp(4Nem(ν)(1 − qm)))

(S10)

=
Pmut(µ) exp(−(ψN(µ) − ψD( f (µ),T )))∑
ν Pmut(ν) exp(−(ψN(ν) − ψD( f (ν),T )))

(S11)

'
Pmut(µ) exp(−∆GND(µ,T )/(kBTs))∑
ν Pmut(ν) exp(−∆GND(ν,T )/(kBTs))

(S12)

where pmut(σ) is the probability of a sequence (σ) randomly
occurring in a mutational process and depends only on the amino
acid composition of the sequence f (σ), qm is the frequency of a
single mutant gene in a population, kB is the Boltzmann constant,
T is growth temperature, Ts is selective temperature that quantifies
how strong the folding constraints are in protein evolution, f (σ) ≡∑
σ f (σ)P(σ) and log Pmut(σ) ≡

∑
σ P(σ) log(

∏
i Pmut(σi)). Then,

the following relationships are derived for sequences for which
f (µ) = f (µ).

4Nem(µ)(1 − qm) = −∆ψND(µ,T ) + constant (S13)

'
−∆GND(µ,T )

kBTs
+ constant (S14)

The selective advantage of ν to µ is represented as follows for
f (µ) = f (ν) = f (σ).

4Nes(µ→ ν)(1 − qm)

= (4Nem(ν) − 4Nem(µ))(1 − qm) (S15)

= −(∆ψND(ν,T ) − ∆ψND(µ,T )) = −(ψN(ν) − ψN(µ)) (S16)

' −(∆GND(ν,T ) − ∆GND(µ,T ))/(kBTs)

= −(GN(ν) −GN(µ))/(kBTs) (S17)

ψN(µ) ' GN(µ)/(kBTs) ψD(µ) ' GD(µ)/(kBTs) (S18)
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where GN(σ) and GD(σ) are the free energies of the native and
the denatured states of sequence σ. It should be noted here that
only sequences for which f (σ) = f (σ) contribute significantly to
the partition functions in Eq. S11, and other sequences may be
ignored.

S.1.5 Relationships among selective temperature (Ts),
glass transition temperature (Tg), and melting temperature
(Tm) of protein

The distribution of conformational energies in the denatured state
(molten globule state), which consists of conformations as com-
pact as the native conformation, is approximated in the random
energy model (REM), particularly the independent interaction
model (IIM) [53], to be equal to the energy distribution of the
randomized sequences, which is approximated by the energy
distribution of the random sequences with the same amino acid
composition and then by a Gaussian distribution, in the native
conformation. That is, the partition function Z for the denatured
state is written as follows with the number density per energy n(E)
of conformations that is approximated by a product of a Gaussian
probability density and the total number of conformations whose
logarithm is proportional to the chain length.

Z =

∫
exp(

−E
kBT

) n(E)dE (S19)

n(E) ≈ exp(ωL)N(Ē( f (σN)), δE2( f (σN))) (S20)

where ω is the conformational entropy per residue in the compact
denatured state, and N(Ē( f (σN)), δE2( f (σN))) is the Gaussian
probability density with mean Ē and variance δE2, which depend
only on the amino acid composition, f (σN), of the protein se-
quence, σN . The free energy of the denatured state is approximated
as follows.

GD(σN ,T ) ≈ Ē( f (σN)) −
δE2( f (σN))

2kBT
− kBTωL (S21)

= Ē( f (σN)) − δE2( f (σN))
ϑ(T/Tg)

kBT
(S22)

ψD(σN ,T ) ≈ ψ̄( f (σ)) − δψ2( f (σ))ϑ(T/Tg)
Ts

T
(S23)

ϑ(
T
Tg

) ≡

{
(1 + T 2/T 2

g )/2 for T > Tg

T/Tg for T ≤ Tg
(S24)

where Ē (ψ̄) and δE2 (δψ2) are estimated as the mean and variance
of interaction energies E (ψN) of the randomized sequences, which
are approximated by random sequences, in the native conforma-
tion; Ē ' kBTsψ̄ and δE2 ' (kBTs)2δψ2. Tg is the glass transition
temperature of the protein at which entropy becomes zero [50],
[51], [52], [53].

−
∂GD

∂T
|T=Tg = 0 (S25)

The conformational entropy per residue ω in the compact dena-
tured state can be represented with Tg.

ωL =
δE2

2(kBTg)2 (S26)

Thus, unless Tg < Tm, a protein will be trapped at local minima
on a rugged free energy landscape before it can fold into a unique
native structure.

The ensemble average of ∆GND(σ,T ) over sequences, which
is observable as the sample averages of ∆GND(σN,T ) over homol-
ogous sequences fixed in protein evolution, is estimated as follows
[16].

〈∆GND(σ,T )〉σ ≡
∑
σ

∆GND(σ,T )Peq(σ)

≈
∑

{σ| f (σ)= f (σN )}

∆GND(σ,T )Peq(σ) (S27)

= 〈GN(σ)〉σ −GD( f (σN),T ) (S28)

where the ensemble averages of GN(σ) over sequences is also
estimated in the Gaussian approximation [53].

〈GN(σ)〉σ

≈

∫
E exp(−

E
kBTs

)N(Ē( f (σN)), δE2( f (σN))) dE (S29)

= Ē( f (σN)) −
δE2( f (σN))

kBTs
(S30)

The sample averages of ∆GND(σN,T ) and ψN(σN) over ho-
mologous sequences fixed in protein evolution are equal to their
ensemble averages over sequences [16].

∆GND(σN,T )/(kBTs)

= 〈∆GND(σ,T )〉σ/(kBTs) (S31)

≈ [ δE2( f (σN)) [ϑ(T/Tg)Ts/T − 1 ]/(kBTs)2 (S32)

= δψ2( f (σN)) [ϑ(T/Tg)Ts/T − 1 ] (S33)

= ∆GND(σN,Tg) / (kBT ′s) (S34)

T ′s = Ts(Ts/Tg − 1)/(ϑ(T/Tg)Ts/T − 1) (S35)

ψN(σN) ≡

∑
σN

wσNψN(σN)∑
σN

wσN

(S36)

= 〈ψN(σ)〉σ ≈ ψ̄( f (σN)) − δψ2( f (σN)) (S37)

where the sample averages are calculated with a sample weight
wσN for each homologous sequence, which is used to re-
duce phylogenetic biases in the set of homologous sequences.
∆GND(σN,Tg) corresponds to the energy gap [50] between the
native and the glass states, and T ′s will be the selective temperature
if ∆GND(σN,Tg) is used for selection instead of ∆GND(σN,T ).

The folding free energy becomes equal to zero at the melting
temperature Tm; 〈∆GND(σN,Tm)〉σ = 0. Thus, the following
relationship must be satisfied [50], [51], [52], [53].

ϑ(
Tm

Tg
)

Ts

Tm
=

Ts

2Tm
(1 +

T 2
m

T 2
g

) = 1 with Ts ≤ Tg ≤ Tm (S38)

S.1.6 Boltzmann machine learning

The cross entropy with a regularization term, S , which corre-
sponds to a negative log-posterior-probability per instance, is
minimized.

S ≡
−1∑
τ 1

∑
τ

log P(στ) + R (S39)

where R is a regularization term, and τ denotes an instance.
According to [14], instead of hi and Ji j, we use the new
parameters φi and φi j for minimization, which are Lagrange
multipliers in the maximum entropy model corresponding to
[
∑
σ P(σ)δσiak − Pi(ak)] and [

∑
σ P(σ)δσiakδσ jal − Pi j(ak, al) −∑

σ P(σ)δσiak P j(al) − Pi(ak)
∑
σ P(σ)δσ jal + 2Pi(ak)P j(al)] in the
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maximum entropy model, respectively. The partial derivatives of
the cross entropy can be easily calculated:

∂S
∂φi(ak)

=
∑
σ

P(σ)δσiak − Pi(ak) +
∂R

∂φi(ak)
(S40)

∂S
∂φi j(ak, al)

= [
∑
σ

P(σ)δσiakδσ jal − Pi j(ak, al)

−
∑
σ

P(σ)δσiak P j(al) − Pi(ak)
∑
σ

P(σ)δσ jal

+2Pi(ak)P j(al)]] +
∂R

∂φi j(ak, al)
(S41)

The relationships between (hi, Ji j) and (φi, φi j) are as follows.

hi(ak) = φi(ak) −
∑
j(,i)

∑
l

φi j(ak, al))P j(al) (S42)

Ji j(ak, al) = φi j(ak, al) (S43)

The single-site and two-site frequencies, Pi(ak) and Pi j(ak, al),
are evaluated from homologous sequences, each of which has a
sample weight wσN , in a multiple sequence alignment.

Pi(ak) =
∑
σN

wσNδσN,iak/
∑
σN

wσN (S44)

Pi j(ak, al) =
∑
σN

wσNδσN,iakδσN, jal/
∑
σN

wσN (S45)

where σN denotes natural sequences.∑
σ P(σ)δσiak and

∑
σ P(σ)δσiakδσ jal are estimated by a

Markov chain Monte Carlo method with the Metropolis-Hastings
algorithm [23], [24], and then a gradient-descent algorithm is
used to minimize the cross entropy S ; the Metropolis-Hastings
algorithm was employed rather than the Gibbs sampler [25],
because calculating full conditionals require more computation
time.

S.1.7 Regularization

Couplings φi j(ak, al) are expected to be significant between
residues that are closely located in a 3D protein structure and
complex. Thus, they are expected to be sparse, because the number
of residue-residue contacts in a protein 3D structure is between 2
and 4 per residue depending on a criterion, in comparison with
the number of residue pairs, L(L − 1)/2, where L is a protein
length [74]. Here, to take account of the sparsity of the couplings,
the elastic net [54], [75], [76] and group L1 regularizations are
employed to see the effects of different regularizations. The elastic
net regularization [54], [75], [76] is used instead of pure L1

regularization, which is not strictly convex and can occasionally
produce non-unique solutions [54]. Group L1 is employed to deal
with pairwise couplings, φi j(ak, al), between residues i and j as a
group.

S.1.7.1 An elastic net regularization
An elastic net regularization [54], [75], [76] is a mixture of L1 and
L2.

R ≡ λ1

∑
i

∑
k

{θ1|φi(ak)| +
(1 − θ1)

2
φi(ak)2} +

λ2

∑
i

∑
k

∑
j(>i)

∑
l

{θ2|φi j(ak, al)| +
(1 − θ2)

2
φi j(ak, al)2} (S46)

where 0 ≤ θ1 ≤ 1 and 0 ≤ θ2 ≤ 1. If θ = 0(1), the regularization
will be L2(L1). In the present work, L1 regularization means the
elastic net with θ = 0.9 rather than 1.0.

S.1.7.1.1 The soft-thresholding function for L1 regular-
ization: Let us assume that the learning of fields and couplings
(φi, φi j) is iteratively updated as follows.

φµ(t + 1) = φµ(t) − [αµ(t + 1) + βµ(t + 1)(
∂S
∂φµ

)φ(t)] (S47)

= φµ(t + 1 without L1) − γµ(t + 1)(
∂|φµ|

∂φµ
)φ(t) (S48)

= prox(γµ(t + 1)|φµ| , φµ(t + 1 without L1)) (S49)

where the suffix µ denotes i(ak) or i j(ak, al), φµ(t + 1 without L1)
is φµ(t + 1) which does not include the L1 regularization term,
and the second term is one corresponding to the L1 terms of the
regularization in Eq. S46, and the derivative in the second term
may be evaluated as a subderivative at a singular point. Here
the proximal operator [77] defined as follows is used for faster
convergence.

prox(h(u), x) ≡ argminu(h(u) +
1
2
‖u − x‖22) (S50)

The proximal operator for L1 regression is equal to:

prox(γµ(t + 1)|φµ| , φµ(t + 1 without L1))

=



if φµ(t + 1 without L1) > γµ(t + 1)
φµ(t + 1 without L1) − γµ(t + 1)

if |φµ(t + 1 without L1)| ≤ γµ(t + 1)
0

if φµ(t + 1 without L1) < −γµ(t + 1)
φµ(t + 1 without L1) + γµ(t + 1)

(S51)

γµ(t + 1) ≡
{
βµλ1θ1 for µ =i (ak)
βµλ2θ2 for µ =i j (ak, al)

(S52)

S.1.7.2 L2 regularization for φi(ak) and group L1 for φi j(ak, al)

The regularization terms of the L2 for φi(ak) and the group L1 for
φi j(ak, al) are as follows.

R ≡ λ1

∑
i

∑
k

1
2
{φi(ak)2} + λ2

∑
i

∑
j(>i)

√∑
k

∑
l

{φi j(ak, al)2}

(S53)
S.1.7.2.1 The soft-thresholding function for group L1

regularization:

φi j(t + 1) = prox(γi j(t + 1)
∥∥∥φi j

∥∥∥
2 , φi j(t + 1 without group L1))

=



if φi j(t) > 0 and φi j(t + 1 without group L1) > γi j(t + 1) φi j(t)

‖φi j(t)‖2

φi j(t + 1 without group L1) − γi j(t + 1) φi j(t)

‖φi j(t)‖2

if φi j(t) < 0 and φi j(t + 1 without group L1) < γi j(t + 1) φi j(t)

‖φi j(t)‖2

φi j(t + 1 without group L1) − γi j(t + 1) φi j(t)

‖φi j(t)‖2

if
∥∥∥φi j(t)

∥∥∥
2 = 0 and φi j(t + 1 without group L1) > γi j(t + 1)
φi j(t + 1 without group L1) − γi j(t + 1)

if
∥∥∥φi j(t)

∥∥∥
2 = 0 and φi j(t + 1 without group L1) < −γi j(t + 1)
φi j(t + 1 without group L1) + γi j(t + 1)

otherwise
0

(S54)

γi j(t + 1) ≡ βi jλ2 (S55)

Here it should be noted that γi j(t + 1) must not depend on (ak, al)
but may depend on (i, j).
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S.1.8 Parameter updates

Given the convexity of the cross entropy function, its minimum
can be found by the gradient descent.

S.1.8.1 Modified Adam method (ModAdam)

The modified version of the adaptive learning rate method [62],
which is named ModAdam here, has been used.

mµ(t + 1) = ρmmµ(t) + (1 − ρm)[(
∂S
∂φµ

)φ(t)] (S56)

vµ(t + 1) = ρvvµ(t) + (1 − ρv)[(
∂S
∂φµ

)φ(t)]2 (S57)

κ(t + 1) = κ0
(1 − ρt+1

v )1/2

1 − ρt+1
m

1
maxµ(vµ(t + 1)1/2) + ε

(S58)

φµ(t + 1) = φµ(t) − κ(t + 1)mµ(t + 1) (S59)

where κ0 is an initial learning rate, and ρm, ρv, and ε/(1 − ρt+1
v )1/2

have been set to 0.9, 0.999, and 10−8 according to the Adam
method [62]. It should be noted here that unlike the Adam method
κ(t+1) takes the same value for all parameters, because vµ(t+1)1/2

is replaced by its maximum in Eq. S58; the condition of Eq. S55
required for the soft-thresholding function is satisfied.

An important property of Adam’s update rule is its careful
choice of stepsizes. The effective stepsize is upper bounded
by |∆φ(t + 1)| ≤ κ0 max((1 − ρm)/

√
(1 − ρv), 1) [62] but es-

sentially all elements of the increment vector ∆φ(t + 1) are
the same order. However, unlike the original Adam, in which
∆φµ(t+1) = −κ0(

√
(1 − ρt+1

v )/(1−ρt+1
m ))(mµ(t+1)/(vµ(t+1)1/2+ε)),

in this modified version the increment ∆φ(t + 1) is proportional to
−m(t + 1).

Thus, αµ and βµ in Eq. S47 are defined as follows.

αµ(t + 1) = κ(t + 1)ρmmµ(t) (S60)

βµ(t + 1) = κ(t + 1)(1 − ρm) (S61)

S.1.8.2 Nesterov’s Accelerated Momentum/Gradient method
(NAG)

The algorithm of Nesterov’s Accelerated Momentum/Gradient
method (NAG) [56] employed here is a simple version with the
constant friction for velocity as follows. This version includes a
correction, which is employed in the Adam method, for the bias
that the estimate of the first moment of the gradients will be biased
towards zero if it is initialized as zero.

mµ(t + 1) = ρmmµ(t) + (1 − ρm)[(
∂S
∂φµ

)φ(t)] (S62)

φµ(t + 1) = φµ(t) − κ0 [(1 + ρm)mµ(t + 1) − ρmmµ(t)] (S63)

= φµ(t) − κ0 [ρ2
mmµ(t) + (1 − ρ2

m)(
∂S
∂φµ

)φ(t)] (S64)

= φµ(t) − κ0 [ρmmµ(t + 1) + (1 − ρm)(
∂S
∂φµ

)φ(t)] (S65)

where κ0 is an initial learning rate, and ρm has been set to 0.95. The
αµ and βµ in Eq. S47 for the NAG method are defined as follows
by replacing mµ(t+1) in Eq. S65 by its estimate, mµ(t+1)/(1−ρt+1

m ),
for the initial condition, m(0) ≡ 0.

αµ(t + 1) = κ0 ρ
2
m [ mµ(t)/(1 − ρt+1

m ) ] (S66)

βµ(t + 1) = κ0 [ ρm/(1 − ρt+1
m ) + 1 ] (1 − ρm) (S67)

S.1.8.3 The number of iterations for learning
The objective function is expected to significantly fluctuate in
the minimization process, when the first-order methods based
on gradients are employed. In addition, the partial derivatives
of Eqs. S40 and S41, which are calculated from the pairwise
marginal distributions estimated by Markov Chain Monte Carlo
samplings, include statistical errors. Thus, even though the learn-
ing rate κ is sufficiently small, the cross entropy/log-likelihood
are not monotonically improved. However, the cross entropy/log-
likelihood can hardly be evaluated for the Boltzmann machine,
although its partial-derivatives can be easily calculated and then
it can be minimized/maximized. Thus, it is not obvious to judge
which set of interactions is the best in the learning process.

Here we monitor the average, DKL
2 , of Kullback-Leibler diver-

gences for pairwise marginal distributions over all residue pairs as
a rough measure of fitting to the reference distribution.

DKL
2 ≡

2
L(L − 1)

∑
i

∑
j>i

∑
k

∑
l

Pi j(ak, al) log
(Pi j(ak, al) + ε)

(
∑
σ P(σ)δσiakδσ jal + ε)

(S68)

DKL
1 ≡

1
L

∑
i

∑
k

Pi(ak) log
(Pi(ak) + ε)

(
∑
σ P(σ)δσiak + ε)

(S69)

where ε = 10−5 is employed to prevent the logarithm of zero. The
iteration of parameter updates has been stopped when min DKL

2
over the iteration numbers larger than 1000 does not improve
during a certain number, 100, of iterations, and the number of
iterations passes over a certain threshold, 1200 iterations. Then
the fields and couplings and Monte Carlo samples corresponding
to the min DKL

2 over the iteration numbers larger than 1000 are
selected.

S.1.9 A gauge employed to compare hi(ak) and Ji j(ak, al)
between various models

The ψN of Eq. S4 is invariant under a certain transformation of
fields and couplings, Ji j(ak, al)→ Ji j(ak, al)− J1

i j(ak)− J1
ji(al)+ J0

i j,
hi(ak) → hi(ak) − h0

i +
∑

j,i J1
i j(ak) for any J1

i j(ak), J0
i j and h0

i .
Therefore, in order to compare h and J between various models, a
certain gauge must be used. Here we use the following gauge that
we call the Ising gauge.

hi(·) =
∑

q

Ji j(ak, ·) =
∑

q

Ji j(aq, ·) = 0 (S70)

where “·” denotes the reference state, which is the average over all
states for the Ising gauge. Any gauge can be transformed to this
gauge by the following transformation.

JI
i j(ak, al) ≡ Ji j(ak, al) − Ji j(·, al) − Ji j(ak, ·) + Ji j(·, ·) (S71)

hI
i (ak) ≡ hi(ak) − hi(·) +

∑
j,i

(Ji j(ak, ·) − Ji j(·, ·)) (S72)

S.2 Figures
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Fig. S1. Comparison of the Adam with the ModAdam gradient-descent method in each of the inferred fields and couplings and the recovered single-
site marginals and pairwise correlations for PF00595. The upper left and upper right figures are the comparisons of the inferred fields and couplings
in the Ising gauge, respectively, and the lower left and lower right figures are the comparisons of the recovered single-site frequencies and pairwise
correlations, respectively. The abscissas and ordinates correspond to the quantities estimated by the modified Adam and Adam methods for gradient
descent, respectively. The regularization model L2-L2 is employed for both methods. The solid lines show the equal values between the ordinate and
abscissa. The values of hyper-parameters are listed in Table 2. The overlapped points of Ji j(ak, al) in the units 0.001 and of Ci j(ak, al) in the units 0.0001
are removed.
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Fig. S2. Differences in the learning of coupling parameters, Ji j(ak, al), between the ModAdam and Adam gradient-descent methods for PF00595. All
Ji j(ak, al) where (ak, al) = argmaxak ,al,deletion |Ji j(ak, al)| in the Ising gauge are plotted against the distance between ith and jth residues. The upper left and
lower left figures are for the iteration numbers 371 and 1119 in a learning process by the modified Adam method, respectively. The upper right and lower
right figures are for the iteration numbers 387 and 1012 in a learning process by the Adam method, respectively. These iteration numbers correspond to
min DKL

2 over the iteration numbers smaller than 400 and those over the iteration numbers larger than 1000. The regularization model L2-L2 is employed
for both methods. The learning processes by both methods are shown in Figs. 2 and 5. Please notice that more strong couplings tend to be inferred for
closely located residues pairs by the modified Adam method than by the Adam method. The values of hyper-parameters are listed in Table 2.
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Fig. S3. Comparison of the NAG with the ModAdam gradient-descent method in each of the inferred fields and couplings and the recovered single-site
marginals and pairwise correlations for PF00595. The upper left and upper right figures are the comparisons of the inferred fields and couplings in the
Ising gauge, respectively, and the lower left and lower right figures are the comparisons of the recovered single-site frequencies and pairwise correlations,
respectively. The abscissas and ordinates correspond to the quantities estimated by the modified Adam and NAG methods for gradient descent, respectively.
The regularization model L2-L2 is employed for both methods. The solid lines show the equal values between the ordinate and abscissa. The values of
hyper-parameters are listed in Table 2. The overlapped points of Ji j(ak, al) in the units 0.001 and of Ci j(ak, al) in the units 0.0001 are removed.
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Fig. S4. Comparison of the RPROP-LR with the ModAdam gradient-descent method in each of the inferred fields and couplings and the recovered single-
site marginals and pairwise correlations for PF00595. The upper left and upper right figures are the comparisons of the inferred fields and couplings in the
Ising gauge, respectively, and the lower left and lower right figures are the comparisons of the recovered single-site frequencies and pairwise correlations,
respectively. The abscissas and ordinates correspond to the quantities estimated by the modified Adam and RPROP-LR method for gradient descent,
respectively. The regularization model L2-L2 is employed for both methods. The solid lines show the equal values between the ordinate and abscissa. The
values of hyper-parameters are listed in Table 2. The overlapped points of Ji j(ak, al) in the units 0.001 and of Ci j(ak, al) in the units 0.0001 are removed.
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Fig. S5. Differences of inferred couplings Ji j among the regularization models for PF00595. All Ji j(ak, bl) where (ak, al) = argmaxak ,al,deletion |Ji j(ak, al)| in the
Ising gauge are plotted against the distance between ith and jth residues. The protein family PF00595 is employed. The regularization models L2-GL1,
L2-L1, and L2-L2 are employed for the left, middle, and right figures, respectively. The values of regularization parameters are listed in Table 2.
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Fig. S6. Comparisons of inferred fields hi(ak) and couplings Ji j(ak, al) in the Ising gauge between the regularization models for PF00595. The upper and
lower figures show the comparisons of fields and couplings in the Ising gauge, respectively. All abscissa correspond to the fields or couplings inferred by
the L2-GL1. The ordinates in the left and right figures correspond to the fields or couplings inferred by the L2-L1 and L2-L2 models, respectively. The
values of regularization parameters are listed in Table 2. The solid lines show the equal values between the ordinate and abscissa. The overlapped points
of Ji j(ak, al) in the units 0.001 are removed.
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Fig. S7. Comparisons of inferred fields hi(a) and couplings Ji j(a, b) in the Ising gauge between the regularization models for PF00153. The upper and lower
figures show the comparisons of fields and couplings in the Ising gauge, respectively. All abscissa correspond to the fields or couplings inferred by the
L2-GL1. The ordinates in the left and right figures correspond to the fields or couplings inferred by the L2-L1 and L2-L2 models, respectively. The values
of regularization parameters are listed in Table 3. The solid lines show the equal values between the ordinate and abscissa. The overlapped points of
Ji j(ak, al) in the units 0.001 are removed.
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Fig. S8. Learning processes by the L2-GL1 model and the ModAdam method for PF00595 and PF00153. The averages of Kullback-Leibler divergences,
D2

KL for pairwise marginal distributions and D1
KL for single-site marginal distributions, are drawn against iteration number in the learning processes with the

L2-GL1 model and the ModAdam method for PF00595 and PF00153 in the left and right figures, respectively. The values of hyper-parameters are listed in
Tables 2 and 3 as well as others.
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Fig. S9. Recoverabilities of the single-site frequencies and pairwise correlations of PF00595 by the Boltzmann machine learning with the L2-GL1 model and
the ModAdam method. The left and right figures are for single-site frequencies and pairwise correlations, respectively; DKL

1 = 0.003695 and DKL
2 = 0.07594.

The solid lines show the equal values between the ordinate and abscissa. The overlapped points of Ci j(ak, al) in the units 0.0001 are removed. See Table
2 for the regularization parameters employed.
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Fig. S10. Recoverabilities of the single-site frequencies and pairwise correlations of PF00153 by the Boltzmann machine learning with the L2-GL1 model and
the ModAdam method. The left and right figures are for single-site frequencies and pairwise correlations, respectively; DKL

1 = 0.001120 and DKL
2 = 0.03176.

The solid lines show the equal values between the ordinate and abscissa. The overlapped points of Ci j(ak, al) in the units 0.0001 are removed. See Table
3 for the regularization parameters employed.
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Fig. S11. Recoverabilities of the single-site frequencies and pairwise correlations by the Boltzmann machine learning with the L2-GL1 model and the
ModAdam method for the protein-like sequences, the MCMC samples that are obtained by the same Boltzmann machine for PF00595. The MCMC samples
obtained by the Boltzmann machine learning with the L2-GL1 model and the ModAdam method for PF00595 are employed as protein-like sequences for
which the Boltzmann machine learning with the same model and method is executed again in order to examine how precisely the marginals of the protein-
like sequences can be recovered. The marginals recovered by the Boltzmann machine learning for the MCMC samples are compared to those of the
MCMC samples in the upper figures, and to those of PF00595 in the lower figures. The left and right figures are for the single-site probabilities and pairwise
correlations, respectively. The solid lines show the equal values between the ordinate and abscissa. The overlapped points of Ci j(ak, al) in the units 0.0001
are removed. See Table 2 for the regularization parameters employed.
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Fig. S12. Recoverabilities of the single-site frequencies and pairwise correlations by the Boltzmann machine learning with the L2-GL1 model and the
ModAdam method for the protein-like sequences, the MCMC samples that are obtained by the same Boltzmann machine for PF00153. The MCMC
samples obtained by the Boltzmann machine learning with the L2-GL1 model and the ModAdam method for PF00153 are employed as protein-like
sequences for which the Boltzmann machine learning with the same model and method is executed again in order to examine how precisely the marginals
of the protein-like sequences can be recovered. The marginals recovered by the Boltzmann machine learning for the MCMC samples are compared to
those of the MCMC samples in the upper figures, and to those of PF00153 in the lower figures. The left and right figures are for the single-site probabilities
and pairwise correlations, respectively. The solid lines show the equal values between the ordinate and abscissa. The overlapped points of Ci j(ak, al) in the
units 0.0001 are removed. See Table 3 for the regularization parameters employed.


