Yoshikazu Ichihara,

Hidenori Hayashida ${ }^{\circ}$,
Sanzo Miyazawa ${ }^{\circ}$
and Yoshikazu Kurosawa
Institute for Comprehensive Medical Science, Fujita-Gakuen Health University, Toyoake, Aichi and
National Institute of Genetics ${ }^{\circ}$, Yata, Mishima

Only $D_{\text {FL16 }}, D_{S P 2}$, and $D_{\mathrm{Q} 52}$ gene families exist in mouse immunoglobulin heavy chain diversity gene loci, of which $D_{\text {FL1 } 6}$ and $D_{\text {SP2 }}$ originate from the same primordial D_{H} gene

Abstract

In mice, 12 germ-line D_{H} genes belonging to three different families ($\mathrm{D}_{\mathrm{OS2}}, \mathrm{D}_{\mathrm{SP2} 2}$ and $\mathrm{D}_{\mathrm{FL} 16}$) have been identified. The D_{H} genes other than $\mathrm{D}_{\mathrm{Q} 52}$ are clustered in the $60 \mathrm{~kb}-$ long region located between V_{H} and J_{H} genes. Since there are seven D_{H} gene families ($\mathrm{D}_{\mathrm{H} O 52}, \mathrm{D}_{\mathrm{XP}}, \mathrm{D}_{\mathrm{A}}, \mathrm{D}_{\mathrm{K}}, \mathrm{D}_{\mathrm{N}}, \mathrm{D}_{\mathrm{M}}$ and D_{LR}) in humans, we tried to identify new D_{H} gene families in the 60 kb -long region using human D_{H} gene probes. Mouse and human D_{H} genes showing the highest similarity were mouse $\mathrm{D}_{\text {FL16 }}$ genes and human D_{A} genes. Southern hybridization of the mouse clones covering the $60-\mathrm{kb}$ region with human D_{H} probes did not detect any other D_{H} genes. Nucleotide sequence analysis of the $4.0-\mathrm{kb}$ fragment containing the $\mathrm{D}_{\mathrm{FL16}, 1}$ gene confirmed this conclusion. Comparison of the 12 germ-line D_{H} genes and more than 150 somatic D_{H} sequences also indicated that there are not more germ-line D_{H} genes in the mouse genome. Moreover, comparison of nucleotide sequences of $\mathrm{D}_{\mathrm{FL} 16,1}$ and $\mathrm{D}_{\mathrm{SP} 2.2}$ genes and their surrounding regions suggests that both D_{H} gene families originate from the same primordial D_{H} gene. Using the flanking sequences of both D_{H} genes, the divergence date between $\mathrm{D}_{\mathrm{FL} 16}$ and $\mathrm{D}_{\mathrm{SP} 2}$ genes was estimated at around 37 million years ago.

1 Introduction

The V region of Ig H chain is encoded by three separate genes in the germ-line genome: $\mathrm{V}_{\mathrm{H}}, \mathrm{D}_{\mathrm{H}}$ and $\mathrm{J}_{\mathrm{H}}[1]$. Both $\mathrm{D}_{\mathrm{H}}-\mathrm{J}_{\mathrm{H}}$ and $\mathrm{V}_{\mathrm{H}}-\mathrm{D}_{\mathrm{H}}$ joinings are necessary to complete an active V_{H} gene [1]. These DNA rearrangements are mediated by the recombinase which recognizes the heptamers CACTGTG and CACAGTG, and the nonamers GGTTTTTGT and ACAAAAACC [2]. The spacer length separating these oligomers is either 12 or 23 nucleotides [3]. D_{H}-coding sequences are bordered by two sets of 12 -nucleotide spacer signals. In mouse, 12 germ-line D_{H} genes have been identified and they can be classified into three D_{H} gene families ($\mathrm{D}_{\mathrm{Q} 52}$, $\mathrm{D}_{\mathrm{SP} 2}$ and $\mathrm{D}_{\mathrm{FL} 16}$ [4]). The D_{H} genes belonging to the $\mathrm{D}_{\mathrm{SP} 2}$ family are regularly spaced every 5 kb . Although human D_{H} genes originally identified by Siebenlist et al. [5] are also regularly spaced every 9 kb , we showed that each $9-\mathrm{kb}$ repeating sequence contains six different D_{H} gene families ($D_{X P}, D_{A}$, $\mathrm{D}_{\mathrm{K}}, \mathrm{D}_{\mathrm{N}}, \mathrm{D}_{\mathrm{M}}$ and $\left.\mathrm{D}_{\mathrm{LR}} ;[6]\right)$.

In this study we tried to identify new D_{H} gene families in the mouse genome using human D_{H} gene-containing fragments as probes. Most mouse D_{H} genes are clustered in the $60-\mathrm{kb}$ region located between V_{H} and J_{H} genes. Southern hybridization of the phage DNA covering the $60-\mathrm{kb}$ region indicated that only fragments containing $\mathrm{D}_{\mathrm{FL} 16}$ weakly cross-hybridized with the human D_{A} probe. We determined the nucleotide sequence of the 4-kb DNA fragment containing $\mathrm{D}_{\text {FL16.1 }}$. This fragment
[I 7722]

[^0][^1]does not contain any D_{H} gene other than $\mathrm{D}_{\mathrm{FL} 16.1}$ itself. Comparison of nucleotide sequences of the germ-line D_{H} genes and more than 150 somatic D_{H} genes indicated that there are not more than 12 germ-line D_{H} genes in the mouse genome. We also discuss the evolution of the mouse D_{H} gene loci.

2 Materials and methods

Six human D_{H} probes $D_{X P}, D_{A}, D_{K}, D_{N}, D_{M}$ and $D_{L R}$ were described in a previous report [6]. Three mouse D_{H} genecontaining clones, RI-2, RI-6, and RP13 were described by Kurosawa and Tonegawa [4]. Southern hybridization was carried out under non-stringent conditions [6, 7]. DNA sequencing was performed by the dideoxynucleotide chain termination method [8].

3 Results

3.1 Identification of putative D_{H} genes by human D_{H} probes

Since in the mouse containing clusters of D_{H} genes regions consist of highly conserved $5-\mathrm{kb}$ repeats [4], three mouse clones, RI-2, RI-6 and RP13 [4] were used as representatives of mouse D_{H} gene-containing clones (Fig. 1). DNA was digested with Eco RI. Six different human D_{H} gene-containing fragments, described previously [6], were used as probes for Southern hybridization. Five probes: $D_{X P}, D_{N}, D_{M}, D_{K}$ and D_{LR} did not give any distinct signals (data not shown). However, the $4-\mathrm{kb}$ Eco RI fragment in clone RI-2 and the $6.7-\mathrm{kb}$ fragment in clones RI-6 and RP13 gave weak but distinct signals with the D_{A} probe as shown in Fig. 2. Southern hybridization of cellular DNA with these six human probes did not give any signal (data not shown). We concluded that if mouse D_{H} genes other than $\mathrm{D}_{\text {SP2 }}$ and $\mathrm{D}_{\mathrm{FL} 16}$ exist, they should have been on these $4-\mathrm{kb}$ and $6.7-\mathrm{kb}$ fragments.

Figure 1. Organization of mouse D_{H} gene loci. Twelve D_{H} genes belonging to three families have been identified [4, 9]. Clones RI-2, RI-6, and RP13 were used in this study. Numbers on the second line indicate sizes of Eco RI fragments in $\mathbf{k b}$. The $4-\mathrm{kb}$ fragment containing $\mathrm{D}_{\mathrm{FL} 16.1}$ was sequenced.

Figure 2. Southern hybridization of mouse D_{H} gene-containing clones [4] with human D_{A} probes. (a) Of each phage DNA $0.5 \mu \mathrm{~g}$ was digested with Eco RI, separated by agarose gel electrophoresis and stained with ethidium bromide. (1) RI-2 contains four Eco RI fragments: $5.4,4.0,3.8,1.2 \mathrm{~kb}$. (2) RI-6 contains three Eco RI fragments: $6.7,5.4,2.8 \mathrm{~kb}$. (3) RP13 contains three Eco RI fragments: 6.7, 5.2, 5.0 kb . The origin of faint bands is not known. Closed triangles indicate the position of λ-Hind III markers. (b) Southern blots of these separated DNA which were hybridized with the human D_{A} probe [6]. The $4.0-\mathrm{kb}$ band in clone RI-2 (1), and the $6.7-\mathrm{kb}$ band in clone RI- 6 (2) and clone RP13 (3) gave distinct signals.

3.2 Nucleotide sequence of the $4.0-\mathrm{kb}$ fragment containing $\mathrm{D}_{\text {FL16.1 }}$

Although the $4-\mathrm{kb}$ and $6.7-\mathrm{kb}$ fragments contained $\mathrm{D}_{\mathrm{FL} 16}$ genes, we determined the total nucleotide sequence of the $4-\mathrm{kb}$ fragment to find the regions giving positive signals with the D_{A} probe. As shown in Fig. 3, there was only one D_{H} gene on this fragment. Homology research between nucleotide sequences of the $15-\mathrm{kb}$ human D_{H}-containing region [6] and this $4-\mathrm{kb}$ fragment showed that homologous regions are very restricted in $D_{\mathrm{FL} 16.1}$ and $\mathrm{D}_{\mathrm{A} 4}$ genes themselves. Fig. 4 shows the comparison of nucleotide sequences of $\mathrm{D}_{\mathrm{FL16.1}}$ and $\mathrm{D}_{\mathrm{A} 4}$ genes. The signal and coding regions of these two genes showed 85% homology; however, the surrounding regions did not have any distinct homology. Although the $6.7-\mathrm{kb}$ fragment containing $\mathrm{D}_{\mathrm{fL} 16.2}$ was not sequenced, it is likely that the region which gave a positive signal with the D_{A} probe in the 6.7 kb fragment was the $\mathrm{D}_{\mathrm{FL} 16.2}$ gene itself.

4 Discussion

In the mouse, $12 \mathrm{D}_{\mathrm{H}}$ genes have been identified, and they can be classified into $3 \mathrm{D}_{\mathrm{H}}$ gene families [4]. In this study, we tried to identify new D_{H} gene families in the mouse genome using human D_{H} probes, since there are seven human D_{H} gene families [6]. However, the only D_{H} genes detected by human D_{H} probes were $\mathrm{D}_{\mathrm{FL} 16}$ genes. Most D_{H} genes were originally identified by using DNA fragments containing $\mathrm{D}_{\mathrm{H}} \mathrm{J}_{\mathrm{H}}$ joints $[4,5]$. In the case of the mouse system, many $D_{H}-J_{H}$ fragments have been sequenced, and in all cases published so far, one of the $12 \mathrm{D}_{\mathrm{H}}$ genes identified was involved in such joinings $[4,10$, 11]. As shown in this study, the D_{H} genes cross-hybridizing with the available D_{H} probes belong to the 12 germ-line D_{H} genes. Therefore, it is unlikely that new D_{H} gene families remain to be found. If so, the 12 germ-line D_{H} genes should encode all somatic D_{H} sequences known so far.

When Kurosawa and Tonegawa [4] compared germ-line D_{H} sequences with somatic D_{H} sequences, only 16 somatic sequences were known. Now, more than 200 somatic D_{H} sequences are known. It is thus worth comparing once more both germ-line and somatic D_{H} sequences. As a source of somatic D_{H} sequences, we used the data book (1987) edited by Kabat et al. [12] although more data has since been published. We defined the somatic D_{H} segment as the region which is not encoded by either germ-line V_{H} or J_{H} genes; therefore, N regions are included in somatic D_{H} segments [13]. Since all of the germ-line J_{H} sequences are known [14], the boundaries between D_{H} and J_{H} regions can be easily assigned. We tentatively assigned the 94 th amino acid residue to the germ-line V_{H} gene and the region after the 95th residue to the D_{H} region (for details see legend of Fig. 5). In the data book [12] 158 somatic D_{H} sequences are available. As listed in Fig. 5, one fifth of them could not be assigned to any of the three D_{H} gene families. Some of them are too short to be assigned. The majority of them are G-rich sequences. Does this mean that there are other germ-line D_{H} genes which are rich in G residues? We think that this is not the case because there is no regularity among these sequences. If these G-rich sequences were encoded by germ-line sequences, there should be sequence similarities among them. They are rich in G residues, but seem to be random sequences, and they may be the products of the activity of the terminal transferase as proposed by Alt and Baltimore [13]. The regions encoded by germ-line D_{H} genes would have been removed during $\mathrm{V}_{\mathrm{H}}-\mathrm{D}_{\mathrm{H}}$ and $\mathrm{D}_{\mathrm{H}}-\mathrm{J}_{\mathrm{H}}$ joining processes.

Fig. 5 summarizes the assignments of somatic D_{H} sequences to germ-line D_{H} genes. Classification of somatic D_{H} sequences was based on similarities of $\mathrm{D}_{\mathrm{H}^{-}}$coding regions and coding

Figure 3. Nucleotide sequence of the 4-kb Eco RI fragment containing the $\mathrm{D}_{\mathrm{FL16.1}}$ gene. Total nucleotide sequence of the 4-kb Eco RI fragment in RI-2 was determined. For comparison, sequence of the Bgl II fragment containing the $\mathrm{D}_{\text {sp2.2 }}$ gene [17] is also shown. Bars indicate the same nucleotide as that of $\mathrm{D}_{\mathrm{FLL6.1}}$. Stars indicate missing nucleotides.
dfli6.1 GGCCAGG GCtttttgt ganggatctac tactgtg tttattactacggtagtagctac cacagtg ctatatccatca gcanaancc cattgtg

Figure 4. Comparison of nucleotide sequences between mouse $\mathrm{D}_{\mathrm{FL16.1}}$ and human $\mathrm{D}_{\mathrm{A} 4}$. Combinations of mouse and human D_{H} genes showing the highest similarity were mouse $D_{\text {FLI }}$ genes and human D_{A} genes. The sequence of $D_{A 4}$ gene was published in a previous study [6]. Positive signals, with human D_{A} probes, from the D_{H} gene-containing clones (Fig. 2) should be due to the above homology.
(A) FL16 family

N_{1}	$\mathbf{T T}$	T CAT	TAC	TAC	GGC	TAC			N_{R}	J_{H}	sef.
TT			c	TAC	GGT	AGT	AGC	T	GG	54	23
				taC	GGT				GGGGCCT	54	24
A			AC	tac	GGT	AGT				J2	27
GGC			TAC	TAC	GGT	AGT	AG		A	J2	30
AGGG			AC	taC	GIT	AGT	AGG	TAC	Gacce	53	55,57
GTCTCAA	TT	T tat	TAC	TAC	GGT	¢GT	AGC	GAC	AAATACTTCACTT	J4	60
\checkmark	T	T tat	tac	TAC	GGT				CCT	J3	69
G		${ }^{\text {AT }}$	TAC	TAC	GGT	AGT				52	76
c		AT	tac	tac	GGT	AGT	AGC	T	CC	J3	83
		tat	tac	TAC	GGT	AGT	AGC		CAT	J3	84
(CGC)		TAT	tac	tac	GGT	AGT	AGC		CTA	J1	85
					GGT	AGT	AGC	TAC	G	J4	90
tacg		AT	TAC	TAC	GGT	AGT	AGC	tac		J2	92,102
		TAT	tac	tac	GGT	AGT	AGC			J2	95
taca		AT	tAC	tac	GGT	AGT	ATC	TA		J4	97
		tat	tac	taC	GGT	AGT	AGC	tac		J2	98
CG	T	T TAT	tac	tac	GG:	AGT	AGC		CCTtG	$J 2$	109
tcganteg		I	TAC	TAC	G				ACTGGTtTg	J3	110
gGGCAGA	TT	T TAT	tac	tac	GGT	AGT	ACC	T		J2	112
		tAT	TAC	tac	GGT	AGT	AGC			J2	121
tcg					GGT	AGT	AAC	TAC	c	J1	123
CCCCACCCAT GGG			c	TAC	GGT	AGT	AGC	tac		$J 4$	130
			TAC	TAC	GGT	AGT	AGC			J2	132
		TAT	tac	tAC	GGT	AGT	AGC	tac		J2	133
TATG		AT	tac	tac	GGT	AGT	AGC	tac		J2	134
		TAT	tac	tac	GGT	AGT	AGC	tac		J2	139
AG	T	T TAT	tac	tac	GGT	AGT	A		CGTCCG	J3	141
			tac	tac	GGT	AGT	AGC	TAC	T	J2	145
tacctc		tat	tac	tac	GGT	AGT	AGC	тас		J2	148
tacga	T	T TAT	tac	tac	GG				GT	J3	149
		TAT	TAC	tac	GGT				GCTG	J2	154
		tat	тAC	tac	GGT	AGT	AGC	T	T	J3	155
		tat	tac	tac	GAG	AGT	AGC		CT	J3	156
(CTC)		tat	tac	tac	GIT	AGT	AGC	тac	G	J3	157
(CCT)		tat	TAC	tac	GG				GGGGG	J1	158
(CCT)		tat	tac	tac	GG				GG	J1	159
- GGG				tac	GGC	T			tat	$J 4$	163
G		${ }^{\text {AT }}$	tac	tac	GGT	AgT	AGC	tac		$J 1$	167
GGA		AT	TAC	taC	GGT	AGT	ACC	T		J1	172
			TAC	tac	GG				AgGAg	J3	173,174
TC		T	TAC	TCC	GGT	AGT	AGC		C	J3	175,176
GATGCGG			AC	tac	GGT	AAT	AGC	tac	ttte	51	181
GGE						AGT	AGC	tac	GGAG	53	184
GG		AT	tac	TAC	GGT				G	53	185,187,188
gatgcagagg		T	taC	TAI	GGT	SGT	AGC	T	CT	51	199
TC		T	tac	taC	GGT	AG			CC	33	203
A			AC	GAC	GGT	AGT	AGC	TAC	GG	J2	204
TCCC		AT	tac	TAI	GGT	GGT	AGC	TAC	G	J2	217
TCGGTC			tac	TAT	GGT	GGT	AGI	tac		52	218
TCGA		AT	tac	TAT	GGT	GGT	AGC	TAC	TC	J2	219
gGgat		T	TAC	TAC	ast	AGT	AGC		CC	52	221
- GGA TT		CAT	TAC	tac	GIC	SAC				52	237,238, 239,240
				TAC	GG				G	$J 3$	244,245
GAT				TAC	GG				G	J2	246
		T TAT	tac	tac	GGT	Ag			GG	J3	255

frame II ttt att act acg gta git get ac
TTC ATT ACT ACG GCT AC

GATECGCTC	ATt	ACT	ACG	GTA	G		GGAGGGGGT	J2	124
-(CCT)		ACT	ACG	GC			CTtagaggg	J1	138
GGA		ACT	ACG	GTg	G		GGAGA	J2	146
есесете	TT	ATT	ICG	ITA	GTA	GC	GG	J4	241
	ATt	ACT	Acg	GTA	G			14	251

Erame III t tta tta cta cge tag tag ctac

Figure 5. Assignments of somatic D_{H} sequences to germ-line D_{H} genes. The data book (page 508 to 519) edited by Kabat et al. [12] was used as the source of somatic D_{H} segments. Ref. indicates the number used in this book. Classification of somatic D_{H} sequences was based on similarity of coding regions and coding frames. Boundaries between V_{H} and J_{H} genes were tentatively fixed at the 94th and 95th amino acid residues. N sequences (N_{L} at the boundaries between V_{H} and $\mathrm{D}_{\mathrm{H}}, \mathrm{N}_{\mathrm{R}}$ at the boundaries between D_{H} and J_{H}) are also written. Since GG, GA, GAT and CC sequences for the 95 th residue might be encoded by germ-line V_{H} genes [22], they are shown in italics. Since there
(B) SP2 family

(C) $\mathrm{D}_{\mathrm{Q} 52}$

(D) not classified

gataggg	J3	32	gatcatgg	J3	49
GATGGGGG	J3	33	GATTGG	J4	50
gatcgiggg	J3	34	gatcaggg	J2	51
GATCGGGGGG	J3	35	GATCAGGGG	J4	52
gatcgagggetg	J3	36	AACGGAGGG	J4	56
gacaga	54	37	GTAGCTCCGGGG	J2	58
GATCGGGG	33	38	GAtagg	$\checkmark 1$	65
GATGGGT	J4	39	GGG	J3	89
GATGGGGA	J4	40	tattg	J4	96
GAAGGGG	54	41	GATTGGGGCT	J3	117
GATAGCGGA	J3	42	---	J3	126
gatcgug	J2	43	tattt	53	127
gatcatgg	J2	44	AGGGATCTCAGGG	J1	137
gatcgegg	J3	45	CCGGGGGTCCC	J2	206
GATGGGGG	J3	46	GACGGGGGA	J2	247
GATGGGG	32	47	(CCC) ---	J2	248
GATGGG	J2	48	ttagacacctceg	J^{3}	250

Table 1. Nucleotide difference of flanking regions between $\mathrm{D}_{\mathrm{FL} 16}$ and $\mathrm{D}_{\mathrm{SP}_{2}{ }^{\text {a }}}$

	Position					
	from	to	N	M	K	$\mathbf{K}^{\text {c }}$
5'-Flanking	2618	3060	445	121	0.2719	0.3377
3'-Flanking	3140	3401	266	65	0.2443	0.2956
Total			711	186	0.2616	0.3217

a) 5^{\prime} and 3^{\prime}-Flanking sequences of D_{H} genes were compared. N is the number of sites compared between $\mathrm{D}_{\mathrm{FL16.1}}$ and $\mathrm{D}_{\mathrm{SP} 2.2}$ [17]. Deletion of continuous two to nine nucleotides was assumed to have occurred as a single event. M is the number of sites showing a difference between $D_{\mathrm{FL} 16}$ and $\mathrm{D}_{\mathrm{SP} 2}$. K and K^{c} indicate nucleotide difference per site and difference corrected for multiple substitutions $K^{c}=-\frac{3}{4} \ln \quad\left(1-\frac{4}{3} K\right)[18,19]$, respectively. Using $K^{c}=$ 0.3217 for $\mathrm{D}_{\mathrm{FL} 16}$ and $\mathrm{D}_{\mathrm{SP} 2}$, the divergence between rat and mouse would have occurred 17 million years ago [20], and using a K^{c} value for rat and mouse of 0.148 [21], the divergence date between $\mathrm{D}_{\mathrm{FL} 162}$ and $\mathrm{D}_{\mathrm{SP} 2}$ was estimated to be about 37 million years ($17 \times$ $\frac{0.322}{0.148}=37$).
frames. The following characteristics were observed (a) $\mathrm{D}_{\mathrm{FL} 16.1}$ is the most frequently (73/158) used D_{H} gene, (b) the codon frame I (TAC TAC GGT and TAC TAT GGT) encoding Tyr-Tyr-Gly is predominantly used in both $\mathrm{D}_{\mathrm{FL} 16}$ and $\mathrm{D}_{\mathrm{SP} 2}$ genes, $65 / 77$ and 29/38, respectively; (c) in the cases where N sequences were not observed at the boundaries between D_{H} and J_{H} genes, 1 to 6 nucleotide-long redundancy frequently existed, that is, a few nucleotides such as CTAC can derive either from germ-line D_{H} or J_{H}. The third point may reflect the repair mechanism taking place after digestion of the ends of D_{H} and J_{H} genes with exonuclease. DNA polymerase and ligase might be involved in the joining process of the processed ends. Since DNA polymerase requires a primer for polymerization [15], the ends of the joined fragments should have complementary nucleotides to supply template and primer. These characteristics were already observed in Kurosawa and Tonegawas's study [4], although only 16 somatic sequences were available; now, they can be generalized in mouse somatic D_{H} sequences. Since virtually all of the somatic D_{H} sequences can be encoded by the $12 \mathrm{D}_{\mathrm{H}}$ genes, we concluded that there are only three D_{H} gene families in mouse genome.
$\mathrm{D}_{\mathrm{FL} 16}$ family has two members and $\mathrm{D}_{\mathrm{SP} 2}$ family has nine members [4]. It is quite obvious that the members belonging to each family were created by a gene duplication mechanism. Moreover, sequences of $\mathrm{D}_{\mathrm{FL} 16}$ and $\mathrm{D}_{\mathrm{SP2}}$ are also homologous to each other, as shown in Fig. 3. The sequence similarity has been found not only in D_{H} genes themselves but also in the surrounding regions; therefore, it is likely that both gene families orginate from the same primordial D_{H} gene. Using the flanking sequences of both genes, we calculated the divergence date beteen $\mathrm{D}_{\mathrm{FL} 16}$ and $\mathrm{D}_{\mathrm{SP} 2}$ genes as described in Table 1, and concluded that $\mathrm{D}_{\mathrm{FL} 16}$ and $\mathrm{D}_{\mathrm{SP} 2}$ genes had diverged around 37 million years ago. Fig. 6 schematically shows the evolutional pathway that created a set of D_{H} genes in the mouse genome. A primordial D_{H} gene was duplicated around 37 million years ago. Mutations were introduced into both DNA fragments, resulting in $\mathrm{D}_{\mathrm{FL16}}$ and $\mathrm{D}_{\mathrm{SP} 2}$ genes. Both

Figure 6. Phylogenetic relationship between $\mathrm{D}_{\mathrm{FL16}}$ and $\mathrm{D}_{\mathrm{SP} 2}$ gene families. $D_{\text {FLi } 61}$ and $D_{S P 2}$ genes diverged from a primordial D_{H} gene around 37 million years ago. Both genes were duplicated once more. After that, only the $\mathrm{D}_{\mathrm{sp} 2}$ gene was multiplied.
genes were duplicated once more. After that, only $5-\mathrm{kb}$ fragments containing the $\mathrm{D}_{\mathrm{SP} 2}$ gene were multiplied several times.

The reason why $D_{\mathrm{FL} 16.1}$ is the most frequently used D_{H} gene is not clear. As long as the usage frequency of $\mathrm{D}_{\mathrm{FL} 16}$ and $\mathrm{D}_{\mathrm{SP} 2}$ was observed in $\mathrm{D}_{\mathrm{H}}-\mathrm{J}_{\mathrm{H}}$ joinings, $\mathrm{D}_{\mathrm{SP} 2}$ and $\mathrm{D}_{\mathrm{FL} 16}$ genes were equally used $[4,10,11]$. Moreover, judging from the sequence observed in $\mathrm{D}_{\mathrm{H}} \mathrm{J}_{\mathrm{H}}$ joints [4, 11], not only the codon frame encoding Tyr-Tyr-Gly, but also the other codon frames were used. Selection might have occurred at the cellular level, not at the joining process. The reading frame of D_{H} regions has also been discussed by others [16], leading to essentially the same conclusion as ours.

We thank Drs. Y. Takagi, I. Ishiguro and K. Fujita for their encouragement. We are also grateful to M. Yasuda, C. Kato and T. Inoue for their technical assistance, and to Ms A. Nagata for preparing the manuscript.

Received June 11, 1989.

5 References

1 Tonegawa, S., Nature 1983. 302: 575.
2 Sakano, H., Huppi, K., Heinrich, G. and Tonegawa, S., Nature 1979. 280: 288.

3 Early, P., Huang, H., Davis, M., Calame, K. and Hood, L., Cell 1980. 19: 981.

4 Kurosawa, Y. and Tonegawa, S., J. Exp. Med. 1982. 155: 201.
5 Siebenlist, U., Ravetch, J. V., Korsmeyer, S., Waldmann, T. and Leder, P., Nature 1981. 294: 631.
6 Ichihara, Y., Matsuoka, H. and Kurosawa, Y., EMBO J. 1988. 7: 4141.

7 Southern, E. M., J. Mol. Biol. 1975. 98: 503.
8 Sanger, F., Nicklen, S. and Coulson, A. R., Proc. Natl. Acad. Sci. USA 1977. 74: 5463.
9 Wood, C. and Tonegawa, S., Proc. Natl. Acad. Sci. USA 1983. 80: 3030.

10 Alt, F., Yancopoulos, G. D., Blackwell, T. K., Wood, C., Thomas, E., Boss, M., Coffman, R., Rosenberg, N., Tonegawa, S. and Baltimore, D., EMBO J. 1984. 3: 1209.

11 Reth, M. G. and Alt, F. W., Nature 1984. 312: 418.
12 Kabat, E. A., Wu, T. T., Reid-Miller, M., Perry, H. M. and Gottesman, K. S., 1987. Sequences of Proteins of Immunological Interest. US Dept Health and Human Services, Washington, DC.
13 Alt, F. W. and Baltimore, D., Proc. Natl. Acad. Sci. USA 1982. 79: 418.

14 Sakano, H., Maki, R., Kurosawa, Y., Roeder, W. and Tonegawa, S., Nature 1980. 286: 676.

15 Goulian, M., Proc. Natl. Acad. Sci. USA 1968. 61: 284.
16 Kaartinen, M. and Makela, O., Immunol. Today 1985. 6: $324 .$.
17 Kurosawa, Y., Von Boehmer, H., Haas, W., Sakano, H., Traunecker, A. and Tonegawa, S., Nature 1981. 290: 565.
18 Jukes, T. H. and Cantor, C. R. in Munro, H. N. and Allison, J. B., (Eds), Mammalian Protein Metabolism, Academic Press, New York 1969, Vol. 2, pp. 21-132.

19 Kimura, M. and Ohta, T., J. Mol. Evol. 1972. 2: 87.
20 Miyata, T., Hayashida, H., Kikuno, R., Hasegawa, M., Kobayashi, M. and Koike, K., J. Mol. Evol. 1982. 19: 28.
21 Hayashida, H. and Miyata, T., Proc. Natl. Acad. Sci. USA 1983. 80: 2671.
22 Rechavi, G., Bienz, B., Ram, D., Ben-Neriah, Y., Cohen, J. B., Zakut, R. and Givol, D., Proc. Natl. Acad. Sci. USA 1982. 79: 4405.

[^0]: * Supported by grants from the Ministries of Education, Science and Culture, Health and Welfare, and Agriculture, Forestry and Fisheries in Japan; Fujita-Gakuen Health University.

[^1]: Correspondence: Yoshikazu Kurosawa, Institute for Comprehensive Medical Science, Fujita-Gakuen Health University, Toyoake, Aichi 470-11, Japan

