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Residue–Residue Potentials with a Favorable Contact
Pair Term and an Unfavorable High Packing Density
Term, for Simulation and Threading

Sanzo Miyazawa 1 and Robert L. Jernigan 2*

Attractive inter-residue contact energies for proteins have been re-evaluated1Faculty of Technology
Gunma University, Kiryu with the same assumptions and approximations used originally by us in

1985, but with a significantly larger set of protein crystal structures. AnGunma 376, Japan
additional repulsive packing energy term, operative at higher densities to2Room B-116, Building 12B prevent overpacking, has also been estimated for all 20 amino acids as a

Laboratory of Mathematical function of the number of contacting residues, based on their observed
Biology, DBS, National distributions. The two terms of opposite sign are intended to be used
Cancer Institute, National together to provide an estimate of the overall energies of inter-residue
Institutes of Health, Bethesda interactions in simplified proteins without atomic details. To overcome the
MD 20892-5677, USA problem of how to utilize the many homologous proteins in the Protein

Data Bank, a new scheme has been devised to assign different weights to
each protein, based on similarities among amino acid sequences. A total of
1168 protein structures containing 1661 subunit sequences are actually used
here. After the sequence weights have been applied, these correspond to
an effective number of residue–residue contacts of 113,914, or about six
times more than were used in the old analysis. Remarkably, the new
attractive contact energies are nearly identical to the old ones, except for
those with Leu and the rarer amino acids Trp and Met. The largest change
found for Leu is surprising. The estimates of hydrophobicity from the
contact energies for non-polar side-chains agree well with the experimental
values. In an application of these contact energies, the sequences of 88
structurally distinct proteins in the Protein Data Bank are threaded at all
possible positions without gaps into 189 different folds of proteins whose
sequences differ from each other by at least 35% sequence identity. The
native structures for 73 of 88 proteins, excluding 15 exceptional proteins
such as membrane proteins, are all demonstrated to have the lowest
alignment energies.
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Introduction

The understanding of protein folding is a
long-standing goal in structural biology. Although a
large number of native structures of proteins are
already known and more are being elucidated
rapidly, usually only relatively small fluctuations
near native structures have been examined in detail
with molecular dynamics simulations that employ
potentials with full atomic representations of
proteins. Much less is known about the denatured
state and the full breadth of the protein folding

process. Simulating the entire protein folding
process, which occurs on a time scale ranging from
milliseconds to seconds, would require enormous
computational power because of the high dimen-
sional space of protein conformations and the
complexity of the energy surface. The present-day
capabilities of computers usually limit the time scale
of molecular dynamics simulations to nanoseconds.
Consequently, simplified models are required for
the study of the protein folding process. Simplifica-
tions can be made to both geometry and potential
functions. Here, we address the design of simplified
but realistic free energy potentials that include
solvent effects.

Previously we evaluated empirically a set of such
Abbreviations used: PDB, Protein Data Bank; s.d.,

standard deviation.
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effective inter-residue contact energies for all pairs
of the 20 amino acids, under the basic assumption
that the average characteristics of residue–residue
contacts observed in a large number of crystal
structures of globular proteins represent the actual
intrinsic inter-residue interactions. For this purpose,
the Bethe approximation (quasi-chemical approxi-
mation) with an approximate treatment of the
effects of chain connectivity was employed with the
number of residue–residue close contacts observed
in protein crystal structures (Miyazawa & Jernigan,
1985). This empirical energy function included
solvent effects, and provided an estimate of the
long-range component of conformational energies
without atomic details. A comparison of these
contact energies with the Nozaki–Tanford transfer
energies (Nozaki & Tanford, 1971) showed a high
correlation, although on average the contact energies
yielded about twice the energy gain indicated by
the Nozaki–Tanford transfer energies (Miyazawa
& Jernigan, 1985). However, when these contact
energies are applied together with a simple
assumption about the compactness of the denatured
state to estimate the unfolding Gibbs free energy
changes for single amino acid mutants of the
tryptophan synthase a subunit (Yutani et al., 1987)
and bacteriophage T4 lysozyme (Matsumura et al.,
1988), they yield estimates that exhibit a strong
correlation with the observed values, especially for
hydrophobic amino acids. Also, the calculated
energy values had the same magnitudes as the
observed values for both proteins. This method can
also explain the wide range of unfolding Gibbs free
energy changes for single amino acid replacements
at various residue positions of staphylococcal
nuclease (Miyazawa & Jernigan, 1994). These facts
all indicate that the inter-residue contact energies
properly reflect actual inter-residue interactions,
including hydrophobic effects originating in solvent
effects.

It is generally thought that the native confor-
mations of proteins correspond to the structures of
lowest free energy. Thus, successful potential
functions, such as those based on native structures,
ought to yield the lowest free energy for the native
conformations. It was demonstrated that classical
semi-empirical potentials such as CHARMM
(Brooks et al., 1983) cannot always identify
non-native folds of proteins (Novotny et al., 1984).
Our contact energies were demonstrated to dis-
criminate successfully between native-like and
incorrectly folded conformations in a lattice study of
five small proteins (Covell & Jernigan, 1990). Sippl
(1990) evaluated the potentials of mean force as a
function of distance for two-body interactions
between amino acids in protein structures from the
radial distribution of amino acids in known protein
native structures. The potentials of mean force for
the interactions between Cb atoms of all amino acid
pairs were used to calculate the conformational
energies of amino acid sequences in a number of
different folds, and it was found that the
conformational energy of the native state is the

Table 1. Summary of protein structures used in the
present analysis
Number of protein structuresa 1168
Number of protein subunit structures 1661
Number of protein familiesb 424
Effective number of proteins (Siwi) 251

a Structures whose resolutions were higher than 2.5 Å and
which were determined by X-ray analyses and are larger than 50
residues. See text for details.

b A set of proteins with less than 95% sequence identity
between any pair.

lowest among the alternatives (Hendlich et al., 1990;
Sippl & Weitckus, 1992; Jones et al., 1992). Pairwise
contact potentials depending on inter-residue
distance were also estimated by Bryant & Lawrence
(1993).

It should be noted here that a two-body
residue–residue potential of mean force based on
the radial distribution of residues will manifest
peaks and valleys as a function of distance, even for
hard spheres, which are effects of close residue
packing. However, these would not be present in
actual interaction potentials. That is, such a
potential of mean force reflects not only the actual
inter-residue interactions, but also includes the
average effects of other residues upon the target
residue pair, including those interposed between
the target pair and especially the significant effects
of residue packing in protein structures. There will
be an over-counting if the sum of the potential is
taken over all residue pairs. Thus, if the residue–
residue potential in a protein is approximated by
such a potential of mean force, the sum of the
potential over all residue pairs is unlikely to yield
the correct value for the total residue–residue
interaction energy. In addition, even though these
effective potentials have the important character-
istics of low values for the native folds of proteins,
they are unlikely to succeed in representing the
actual potential surface far from the native
conformation. Therefore, such potentials of mean
force may not be appropriate for application in a
study of a wide range of conformations, from the
denatured state to the native conformation.

On the other hand, a direct account of the
requirement that the native state be lowest in energy
was taken by Crippen (1991), and Maiorov &
Crippen (1992), who tried to fit empirically a
feasible set of parameters, which corresponded to
contact energies between amino acid groups
separated at certain ranges of distance, in such a
way that the total contact energies of native
conformations were lower than other alternatives.
As with all of these potentials, it is unknown how
well this potential represents the actual potential
surface far from the native conformation.

Lüthy et al. (1992) developed an empirical method
to evaluate the correctness of protein models.
Pseudo-potentials have been devised to find out
which amino acid sequences fold appropriately into
a known three-dimensional structure (Bowie et al.,
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Figure 1. A comparison of the coordination number, qi ,
between the previous analysis (1985) and this work for
each type of amino acid. Slv denotes solvent. The ordinate
indicates the values previously reported by Miyazawa &
Jernigan (1985) and the abscissa the values obtained in
this work. A continuous line shows the regression line
that is y = −0.19 + 1.03x; the correlation coefficient is 0.98.

would be developed. In the Bethe approximation,
the effects of interactions are taken into account to
estimate the average numbers of contacts. Thus, the
Bethe approximation is the lowest order approxi-
mation to be able to provide an estimate of a set of
contact energies between species from a given set of
the average numbers of contacts between them.

Therefore, if residue–residue contacts in protein
structures can be reliably represented to be the
same as those in mixtures of unconnected amino
acids and solvent molecules, the Bethe approxi-
mation will give us a reasonable estimate of actual
interaction energies between amino acids. Of
course, it must be examined whether or not this
basic approximation is appropriate to describe the
contacts in real protein structures. Also, a limitation,
both of this method and of methods using a
potential of mean force to evaluate inter-residue
interactions, lies in the fact that the effects of specific
amino acid sequences on the statistical distribution
of inter-residue distances are completely neglected,
although the characteristics of the protein being a
chain are included as a mean field.

Here, the effective inter-residue contact energies
for all amino acid pairs are re-evaluated using the
same method as before, but with significantly more
protein structures than before. In the original work,
only 42 globular proteins were used to calculate
contact frequencies between amino acids. Since
1985, many additional protein structures have been
reported, and now more than 1000 protein
structures are available. However, one complication
arises from the fact that there are many homologous
proteins in the Protein Data Bank (PDB; Bernstein
et al., 1977). For example, the structures of many
single amino acid mutants of T4 lysozyme are
included in the PDB. Therefore, to use all of this
structural data, an unbiased sampling of protein
structures from the PDB is required in the
calculation of the contact frequencies. Here, a
sampling weight for each protein has been devised
based on a sequence homology matrix giving the
extent of sequence identity of all pairs of sequences.

In the estimation of the attractive contact energies,
the Bethe lattice is used for conformational space.
However, an additional repulsive potential based on
many-body residue packing is needed to properly
estimate the long range energies of protein
conformations. Here, the repulsive energies that
result from tight packing of residues are evaluated
as a function of the numbers of contacting residues
based on their distributions in known protein
structures.

Results

Sample weighting

According to the procedure described in
Methods, 1168 protein structures, whose structures
have been analyzed by X-ray and whose resolution
has been reported to be better than 2.5 Å, are
chosen, and then each of the 1661 sequences in

1991; Nishikawa & Matsuo, 1993). The pseudo-
potential devised by Nishikawa & Matsuo (1993)
was composed of four terms, side-chain packing,
hydration, hydrogen bonding and local confor-
mational potentials, and was empirically derived
from the statistical features observed in 101 known
protein structures. A slightly modified form of the
Sippl potential was used to take account of the effect
of side-chain packing in proteins. All other terms
were also evaluated as potentials of mean force.
This function was also demonstrated to be an
appropriate measure of the compatibility between
sequences and structures of proteins. They share a
number of common characteristics with empirical
energy potentials, but they are not designed to be
used explicitly as an empirical energy function. In
the case of Nishikawa & Matsuo (1993), each of the
four terms are summed with weights in the total
energy.

On the other hand, the present two-body contact
energies are estimated with the Bethe approxi-
mation with the basic assumption of regarding
residue–residue contacts in protein structures to be
the same as those in mixtures of unconnected amino
acids and solvent molecules. The Bethe approxi-
mation is a well-known second-order approximation
to the mean field approximation used to describe
a system consisting of a mixture of multiple
molecular species interacting with each other (Hill,
1960). Both approximations are usually used to
calculate a partition function for such a system
from a given set of interaction energies between
molecules. In the mean field approximation, con-
tacts between species would be approximated to be
random, and a partition function of the system
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Figure 2(A–C)

those structures is sampled with a weight deter-
mined as described below on the basis of the
sequence identity matrix. Sequences are aligned in
a conventional pairwise manner with a global
alignment method (Needleman & Wunsch, 1970),
using the log odds matrix for 250 PAM (Dayhoff
et al., 1978) as a scoring matrix for amino acid
similarity. Penalty for a gap (of k residues) is taken
to be 12 + 4(k − 1) with the cut-off value of 48, but
no penalty is used for terminal gaps. Sequence
identities are then calculated for the aligned pairs of
sequences. In the original work, the numbers of
contacts in protein structures were counted in
complete assembly. In the present calculation, only
the coordinates of subunits explicitly given in the
PDB files are used. As listed in Table 1, the effective
number of proteins is 251. The effective number of
residues is 54,356, and the total effective number of
contacts is 113,914 in the present analysis; by
contrast, these values were 9040 and 18,192 in the
original analysis, respectively. The total effective
number of contacts is 6.3 times the previous data.
Thus, on average, the standard deviations in the
numbers of contacts could be expected to be
reduced by a factor of 1/2.5.

Estimates of contact energies

The effective numbers of contacts observed in the
protein structures are listed in the lower triangle of
Table 2. The entries in Table 2 have been multiplied
by ten for diagonal elements and by 20 for
off-diagonal elements. The numbers in the upper
triangle of Table 2 correspond to the correction
factors, C and C ', for the estimation of contact
energies; see equations (29), (30), (36) and (37) in
this paper, and also equations (10) to (15) of
Miyazawa & Jernigan (1985). The coordination
number for each residue type has been estimated in
the same way with equation (33) of Miyazawa &
Jernigan (1985) from the volume of each type of
residue at the center and the average volume of its
surrounding residues. These newly estimated
coordination numbers are listed in the last row of
Table 3 and are very similar to the previous

Figure 2. A, A comparison of the average contact
energy, ei , in RT units for each type of amino acid
between the previous analysis (1985) and this work. The
ordinate values are those reported by Miyazawa &
Jernigan (1985) and the abscissa the values obtained in the
present analysis. The continuous line is the regression
line, y = 0.06 + 0.92x; the correlation coefficient is 0.98.
B, A comparison of the contact energy, eij , in RT units of
each type of contact between the previous analysis (1985)
and this work. A continuous line shows the regression
line that is y = 0.03 + 0.93x; the correlation coefficient is
0.97. C, A comparison of the energy, e'ij , in RT units, which
is the energy difference accompanying the formation of a
contact pair i–j from contact pairs i–i and j–j, between the
previous analysis (1985) and this work. The regression
line is y = −0.02 + 0.96x, and the correlation coefficient is
0.88.
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estimates (1985) as shown in Figure 1; the regression
line is y = −0.19 + 1.03x and the correlation coeffi-
cient is 0.98.

Effective contact energies are estimated from
these numbers and are listed in dimensionless
units, units of RT, in Table 3. Figure 2 shows a
comparison between the new contact energies and
those from the previous analysis. The average
contact energies, ei , for each type of residue are
compared in Figure 2A, and each of the contact
energies, eij , is compared in Figure 2B. The ordinate
values are those reported by Miyazawa & Jernigan
(1985) and the abscissa values those obtained in the
present work. Correlations between both estimates
are high; the correlation coefficient is 0.98 for ei

and 0.97 for eij . The difference between these two
estimates tends to be larger for hydrophobic amino
acids than for hydrophilic ones. On average, the
present estimates of contact energies are slightly
more negative than the previous estimates, perhaps
reflecting large structures present in the new data;
the regression line is y = 0.06 + 0.92x for ei , and
y = 0.03 + 0.93x for eij . The present estimate of the
mean contact energy, er , is equal to −3.6, which is
more negative than the old estimate, −3.2.

Also, the differences between individual new
and old contact energies tend to be large for
infrequent amino acids such as Trp and Met. This
might be expected. However, there is one large
difference for a common amino acid, Leu. The
contact energy of any pair with Leu is significantly
more negative in the present analysis. All of the top
ten contact pairs with large differences involve pairs
with Leu. The difference in the contact energy for
the Leu–Leu pair is the largest among them, and the
present estimate, −7.37, is more negative than the
previous one, −5.79. If the coordination number for
Leu were estimated to be smaller in the present
work than previously, then the contact energy for
any pair with Leu would be estimated to be more
negative. However, the two estimates of the
coordination number of Leu are almost identical
(see Table 2 and Figure 1). The comparison of the
distribution of the number of contacts for Leu
clearly shows that the present distribution is shifted
toward more contacts than the previous one.
Therefore, there are actually more contacts with Leu
in the present data than before, but the reason is
unclear.

As shown in equation (27), the estimation of
contact energies, eij , requires the estimation of n00,
which is not so accurate. On the other hand, relative
differences between contact energies do not depend
on such a parameter; see equation (28). As already
stated, the absolute values of the contact energies
might be expected to be less reliable than their
relative differences. The required scaling factor for
absolute energy specification could be adjusted by
making err consistent with experimental estimates of
the average attractive energy between residues.

Figure 2C shows the comparison of the values of
e'ij between the two estimates. The estimation of e'ij ,
which is the energy difference accompanying the

Figure 3. Transfer free energies of amino acids relative
to glycine between octanol and water corrected by Sharp
et al. (1991) and the corresponding values of −0.6qiei /2 in
this work. −RTqiei /2 corresponds to the average contact
energy gain of an i type residue completely surrounded
by other residues in the protein crystal structures.
RT = 0.6 kcal/mol has been employed to transform the
dimensionless contact energies into kcal/mol units. The
modified transfer free energies of 20 N-acetyl amino acid
amides between octanol and water are taken from
Table III of Sharp et al. (1991); these values include volume
corrections for solute–solvent size differences. The line of
unit slope is shown by a dotted line. Filled circles show
the values for non-polar side-chains (Ala, Val, Ile, Leu,
Phe) and open circles for other amino acids; Gly is located
at the origin. The regression line, not shown here, is
y = −0.14 + 0.96x, and the correlation coefficient is 0.98 for
non-polar side-chains. Although polar amino acids are
given in this Figure, the comparison is strictly meaningful
only for non-polar residues.

formation of the two contact pairs i–j from the
contact pairs i–i and j–j, does not require estimation
of n00. Therefore, their estimates might be expected
to be more accurate than the absolute values of the
contact energies, eij . The regression line in Figure 2C
almost passes through the origin with unit slope; it
is y = −0.02 + 0.96x. Even though the correlation
between the two estimates is clearly not as good as
for the contact energies eij , its value is still quite
good at 0.88.

The important qualitative characteristics of the
contact energies observed in the previous analysis
hold in the present results; the values of e'ij clearly
show: (1) a relatively large energy loss accompany-
ing the formation of Cys–X contacts from Cys–Cys
and X–X contacts, probably reflecting the loss of
disulfide bonds; (2) the large favorable electrostatic
interactions between positively charged (Lys, Arg)
and negatively charged (Glu, Asp) amino acids; and
(3) the segregation of hydrophobic and hydrophilic
residues.
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A C

B D

Figure 4. The frequency distribution of the number of contacts for each type of amino acid. The distribution for each
type of amino acid is shown by order of increasing values of eir , which measures the hydrophobicity of the amino acid,
in A to D. Total in C shows the frequency distribution of the number of contacts, irrespective of amino acid type.

Comparison with experimental
transfer energies

Figure 3 shows the comparison of the contact
energies with the transfer free energies, taken from
Table III of Sharp et al. (1991), for amino acids
relative to glycine between octanol and water. The
abscissae show values of −0.6qiei /2 that correspond
to the average contact energy gain of an i type of
residue completely surrounded by other residues in
protein crystal structures. For comparison, a value
of RT = 0.6 kcal/mol has been employed in this
Figure to express the dimensionless contact energies
in kcal/mol units. Sharp et al. (1991) re-evaluated
the transfer free energies of 20 amino acids between
octanol and water taken from Fauchère & Pliška
(1983) by including volume corrections for solute–
solvent size differences. The filled circles show the
values for non-polar side-chains, Ala, Val, Ile, Leu
and Phe, and the open circles for other amino acids;
Gly is located at the origin. The plots for the most
hydrophobic side-chains are located nearly directly
on the dotted line of the unit slope, i.e. the two
values are nearly identical. Their coincidence
strongly supports the present estimates of long-
range interactions between side-chains. Although

polar amino acids are also plotted in this Figure, the
comparison is really meaningful only for non-polar
residues, because organic solvents cannot represent
circumstances surrounding polar residues in native
protein structures; ei for polar residues includes
not only hydrophobic energies but also the average
of other interaction energies with surrounding
residues and water in proteins, such as hydrogen
bonds and electrostatic energies. Thus, the extent of
agreement is, overall, better than might be expected.

Distributions of the number of
residue contacts

The distribution of the number of contacts for
each of the 20 types of amino acids in protein
crystals is shown in order of increasing values of eir ,
which measure the hydrophobicity of amino acids,
in Figure 4A to 4D. Amino acids whose values of
eir are similar will show similar frequency distri-
butions, although the coordination numbers must
be taken into account. For example, the distribution
for Cys is shifted somewhat toward more contacts
than that for Trp, even though ecys,r for Cys is more
positive than that for Trp, because the coordination
number for Cys is significantly larger than that for



Residue–Residue Potentials 631

Trp. The distributions for non-polar amino acids
have single peaks around nc = 6 and those for the
most polar amino acids near nc = 2. These numbers
of contacts are typical for residues buried com-
pletely inside of proteins or for residues exposed on
the surfaces of proteins. This indicates that the
system consists nearly of two phases, buried
residues and surface residues. The distribution for
Ser clearly shows the presence of a shoulder near
nc = 6, as well as a single peak at nc = 2. For such
residue types that are ambivalent in character, the
distributions can readily be decomposed into two
peaks with maxima near 2 and 6.

Table 4 shows only the high density portion of the
distribution of the number of contacts for each of
the 20 types of amino acid in protein crystals. Each
number in the table is an effective number because
it is the sum of the numbers of contacts weighted
by the sampling weight of equation (50) to remove
any sampling bias from homologous protein
sequences included in the protein sample. Repul-
sive packing energies have been estimated directly
from the values in this table by using equation (43).

Average residue–residue energies

Replacing eipj in equation (19) by the average
contact energy eip of the ip type of amino acid, the
average contact energy for the pth residue is
represented by:

�Ec
p�01

2 eipn
c
p (1)

and depends linearly on the number of contacts
with the pth residue, nc

p. Figure 5 shows the
dependence of the long range interaction energy on
the number of contacts for each type of amino acid.
The ordinate corresponds to the sum of the average
attractive contact energy (equation (1)) and the
repulsive packing energy (equation (43)). In the
repulsive region shown in this Figure, the repulsive
packing energy, the second term in equation (43),
does not depend so much on the type of amino
acid. This is expected, because repulsive packing
energies should reflect only packing density and not
depend strongly on the type of amino acid at the
center; likewise, the coordination number of the
amino acid does not depend much on the type of
amino acid.

Total energies of individual proteins

As described in Methods, the long-range energy
defined by equation (13) has been calculated for a
set of 189 representatives of protein structures in the
PDB, which differ from each other by at least 35%
sequence identity, but do not include too many
unknown atomic coordinates, which were selected
by Orengo et al. (1993).

The numbers of residues in contact with each
residue along a chain are calculated by counting
residues within 6.5 Å of each residue according to
equation (14): the contact energies between these

residue pairs are then evaluated from Table 3 and
summed up according to equation (19). Also
repulsive energies are estimated for the residue
according to equation (40). The hard core repulsion
defined by equation (41) is not included here with
ehc = 0, because known protein structures were
usually refined to remove such close contacts, and
such close contacts are easily removed by structure
refinement. The repulsive packing energy is esti-
mated according to equation (43), if the number of
contacts at the pth residue is above the threshold
value qip . Then, those contact energies and repulsive
energies are summed over all residues in a protein
to estimate the total long-range energy.

As discussed in the previous work, the total
contact energies are expected to consist of two
terms, a term that is proportional to the chain length
and another term that is proportional to the surface
area of the proteins, that is, the two-thirds power of
the chain length for proteins whose shapes are
similar to each other:

s
p

Ec
p = s

i($0)

s
j($0)

eijnij (2)

= ernrr (3)

2ev s
i($0)

1
2 qini − esnr0 (4)

where

ev = 0 s
i($0)

eiqiNi1>0 s
i($0)

qiNi1 (5)

= −3.26

es = 0 s
i($0)

eiNi01/Nr0 (6)

= −2.57

In Figure 6A, the long-range energies per residue
calculated with equation (13) are plotted in
dimensionless units against the inverse of the
one-third power of their chain lengths. Monomeric
proteins, whose shapes could be similar to each
other, are shown by filled circles, and the regression
line for them is shown by a continuous line that is
given by Elong/nr = −8.5 + 10.1n−1/3

r . The correlation
coefficient is 0.67. The value of the intersect of the
regression line is more positive than expected from
equation (4), probably because of repulsive packing
energies included in the total long-range energies of
the proteins.

Alignment energy for residues within a
protein structure

In the present contact energies, any contact has a
favorable contribution to protein stability, even if it
is between polar residues, because contact energies
between residues are all negative. Therefore,
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A

B

C

Figure 5. The dependence of the average long-range
energy on the number of contacts for each residue type.
A, Ranges of packing density as reflected in nc

p values.
B, Values for the more polar residue types. C, The less
polar residue types in order of decreasing values of eir ,
which measures the hydrophobicity of the amino acid.
The ordinates show the sum of the average contact energy
and the repulsive packing energy, in dimensionless RT
units; see equation (1) for the definition of the average
contact energy and equation (40) for the repulsive packing
energy. The hard core repulsion energy is not included
here; ehc = 0 in equation (41).

non-representative proteins whose shapes differ
significantly from a globular form, or small
proteins like inhibitors, are often stabilized by
disulfide bonds whose effects on protein stability
are not counted here. Other effects not accounted
for here are effects of the backbone and details of
denatured state entropies. Also, as already noted,
the estimate of err , which is defined by equation
(34) and reflects the overall compactness of
proteins, is less reliable. Consequently, an assess-
ment of protein stability based on the total
number of contacts in a protein could lead to an
incorrect result. Thus, in order to measure the
stability of any protein structure for a given
sequence, it might be better to use the energy
that does not include the homogeneous energy
for protein collapse but consists only of the
remaining energy for aligning residues with the
contacts assumed to be present within the protein
structure. The alignment energy of residues
within a protein structure is therefore defined
here to be the total contact energy minus the
average collapse energy:

Ec
p (eij − err ) = Ec

p (eij ) − Ec
p (err ) (7)

where Ec
p (eij − err ) is a function of (eij − err ) that is

calculated by replacing eij with (eij − err ) in equation
(18). eij − err here is named the alignment energy for
contacts between residues of type i and j, and
represents the relative preference of the i–j contacts
compared to the average attraction.

It should also be noted that Ec(eij − err ) does not
depend on nr0 but has only a linear dependence on
the chain length; because es is almost equal to err , the
second term in equation (4) is negligible. The value
of err is estimated to be −2.55 in RT units as given
in Table 3.

It is clear from equation (7) that Ec
p (eij − err ) will

be positive unless hydrophobic residues are buried
inside proteins and hydrophilic ones are exposed
to solvent on the surfaces of proteins. In other
words, the alignment energy, Ec

p (eij − err ), is consist-
ent with the polar-out and non-polar-in rule
observed in protein structures. Here it should be
noted that equation (7) can be applied to proteins
in water, but should not be used in a hydrophobic
environment.

The total alignment energy in the form of
equation (7) is appropriate for the consideration
of the stabilities of protein conformations for
a given sequence, but it is still inappropriate
for the stabilities of a given fold for different
protein sequences. In the latter case, a simple
comparison of the energies of a given fold
among protein sequences would be meaningless,
because the ensemble of protein conformations
could depend on the protein sequence. The
stability of a specific conformation for a protein
is determined in relation to the whole ensemble
of protein conformations. Therefore, unless the
whole ensemble of protein conformations is
known, reference energies, each of which reflects
to some extent the partition function for a

conformations with the most contacts tend to be
the most stable in the assessment of the total
contact energy. However, a rigorous treatment of
binding requires an estimate of the entropy loss
as well as the binding energy. On the other hand,
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A B

Figure 6. A, The dependence of the long-range energy per residue on the inverse of the one-third power of chain
length. B, The long-range energy per residue with a collapse energy subtracted to remove the protein size dependence.
See equation (13) for the definition of the long-range energy, and equation (12) for DElong(eij − err ). The long-range energies
include the contact energies and the repulsive packing energies, but not the hard core repulsion energies, i.e. ehc = 0
in equation (41). All energies here are given in RT units. The representative protein structures used here are 189 protein
structures that differ from each other by at least 35% sequence identity and are those selected by Orengo et al. (1993)
(see their Table 1). Proteins with many unknown atomic coordinates are not included. The filled circles show the values
for monomeric proteins determined by X-ray, not including membrane proteins, metal binding proteins, DNA binding
proteins and inhibitors, and multimeric proteins not given in their complete assembly in the coordinate files. The open
circles are proteins whose structures are given in an at least partial, if not full, assembly of subunits. A continuous line
shows the regression line for the monomeric proteins. In A, the regression line is Elong(eij )/nr = −8.5 + 10.1n − 1/3

r , and the
correlation coefficient is 0.67. In B, a collapse energy has been removed, so that the regression line is almost flat,
DElong(eij − err )/nr = 0.30 − 0.01n − 1/3

r , and the correlation coefficient is 0.001. The entry names and sequence identifiers of
the PDB files used in preparing this Figure are:

Membrane proteins:
1PRC-L 1PRC-M 1PRC-C 2P0R 1SN3 1VSG-A 1HGE-A 1HGE-B 1PRC-H
Metal binding proteins:
1CY3 1PRC-C 5RXN 2HIP-A 2CDV
DNA binding proteins:
1HDD-C
Inhibitors:
1H0E 1PI2 3EBX 20V0 5PTI
Multimeric proteins without subunit interactions:
2WRP-R 1UTG 1R0P-A 2TMV-P 2RHE 2STV 3PGM 61DH 1PYP
Structures determined by NMR:
1C5A 1HCC 1ATX 1SH1 2SH1 1EPG 4TGF 3TRX 1EG0 1APS 1IL8-A 2GB1
Other monomeric proteins:
1MBC 1MBA 1ECD 2LH3 2LHB 1R69 4ICB 4CPV 1LE2 1YCC 1CC5 451C 1IFC 1RBP 1SGT 4PTP 2SGA 2ALP 2SNV
1CD8 1CD4 1ACX 1PAZ 1PCY 1GCR 2CNA 3PSG 1F3G 8I1B 1ALD 1PII 6XIA 2TAA-A 4ENL 5P21 4FXN 2FCR 2FX2
3CHY 5CPA 8DFR 3DFR 3ADK 1GKY 1RHD 4PFK 3PGK 2GBP 8ABP 2LIV 1TRB 1IPD 4ICD 1PGD 8ADH 2TS1 1PHH
31ZM 1LZ1 1RNH 7RSA 1CRN 1CTF 1FXD 2FXB 4FD1 1FDX 4CLA 9RNT 1RNB-A 1FKF 1SNC 1UBQ 3B5C 9PAP
3BLM 2CPP 1CSC 1ACE 1C0X 1GLY 1LAP 1LFI 2CYP 8ACN 2CA2
Other multimeric proteins:
1HBB-A 2SDH-A 1ITH-A 1C0L-A 1LMB-A 3SDP-A 2SCP-A 2HMZ-A 256B-A 2CCY-A 1GMF-A 1BBP-A 2FB4-H
3HLA-B 1C0B-A 2AZA-A 2PAB-A 1BMV-1 1BMV-2 2PLV-1 1TNF-A 2MEV-1 2MEV-2 2MEV-3 2PLV-2 2PLV-3 2LTN-A
2RSP-A 2ER7-E 5HVP-A 1NSB-A 5TIM-A 2TRX-A 1CSE-E 1GP1-A 4DFR-A 8CAT-A 4MDH-A 1GD1-0 7AAT-A
1HRH-A 1RVE-A 2SIC-I 8ATC-B 2TSC-A 2SAR-A 1MSB-A 1B0V-A 1FXI-A 1TGS-I 1TPK-A 9WGA-A 3HLA-A 8ATC-A
2CPK-E IGST-A IOVA-A 7API-A IWSY-B 2GLS-A 2PMG-A 6TMN-E 3GAP-A

sequence, are needed in order to measure the
stabilities of a given fold for protein sequences.
Here, we choose the total energy expected for
a typical protein with the given amino acid

composition and chain length to be the reference
energy of the native structure for the given protein
sequence, in order to compare the alignment
energies of the native folds among a wide range of
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protein sequences; see Miyazawa & Jernigan (1994)
for a reference state that is appropriate to measure
stability changes due to limited amino acid changes
in a protein. That is, the following difference in
energy is considered:

DElong 0 Elong

− (Elong of a typical native structure
for a given sequence) (8)

0Elong − s
p

fip

· (the average number of contacts per
residue in a typical native structure) (9)

where the latter sum is the sum of the average
contact energies per residue of residue type ip over
all positions in the protein. fi as a function of eij is
estimated by averaging over all proteins; that is:

fi (eij )0ei
Nir

Nrr

Nr

Ni
(10)

The values of fi (eij ) are given in Table 3. The average
number of contacts per residue in a typical native
structure for a given sequence is estimated as
follows, ignoring the chain length dependence.

(the average number of contacts per residue in a
typical native structure):

0Nrr /Nr = 2.096 (11)

Because the second term of equation (9) does not
depend on protein conformation but only on the
amino acid composition and the length of the
protein, it is a scaling factor and does not have any
effect in a comparison of different conformations for
the same protein. However, to a certain extent, its
use will allow us to discuss how compatible a given
protein sequence is with a certain structure, as well
as how stable a particular conformation is for a
certain sequence.

Lastly, a linear dependence on chain length is
removed by comparison on a ‘‘per residue’’ basis,
and the following quantity, which is appropriate for
assessing the stability of one protein structure
among other folds, is obtained:

DElong(eij − err )/nr

0[Elong(eij − err ) − s
p

fip (eij − err )

· (Nrr /Nr )]/nr (12)

where DElong(eij − err ) and fip (eij − err ) are calculated
by substituting eij with (eij − err ) in equations (9) and
(10). DElong includes both attractive and repulsive
terms; the latter will be important principally for
poor quality structures.

In Figure 6B, the estimates of DElong(eij − err )/nr for
the protein representatives are plotted against n−1/3

r .
As expected, overall there is no correlation between
the two quantities for monomeric proteins; the
mean for monomeric proteins is slightly more
positive than zero, because the repulsive packing

energy is included in DElong(eij − err )/nr . Therefore,
this alignment energy has removed the dependence
on the size of the protein. Membrane proteins,
which are shown as crosses, tend to have much
higher values of DElong(eij − err )/nr than the mean for
monomeric proteins. This is to be expected, because
membrane proteins are not stable in water; in
membrane proteins, portions exposed and embed-
ded in the membrane are highly hydrophobic, and
the surface is hydrophobic rather than hydrophilic,
resulting in relatively high values of DElong(eij − err ).
The same type of exception can be found for the
metal binding proteins and the DNA binding
proteins, in which metals and DNA have been
treated here only as holes filled with water in the
calculation of the total contact energies. Also, the
multimeric cases, shown as open circles, tend to be
located above the continuous line, probably because
some coordinates of the inter-molecular neighbors
are incompletely given in the partially assembled
structures. On the other hand, the high values of
energies for proteins whose structures were
determined by NMR may indicate the relatively
poorer resolution of these structures.

Discrimination for the native structures among
other folds

The threading of sequences into other folds
(Hendlich et al., 1990; Jones et al., 1992) or more
generally the inverse folding (Bowie et al., 1991) is
a good method to evaluate how well a given energy
scale can discriminate the native structures as the
lowest energy conformations among other folds. A
more extensive study of inverse folding, in which
deletions and additions are included, will be
reported in a subsequent paper. Here, a result for
simple threading of protein sequences without gaps
into other folds is reported as a demonstration of the
discrimination power of our alignment energy.

A total of 88 proteins determined to a resolution
better than 2.5 Å by X-ray analyses, which are
structurally dissimilar to each other with values
smaller than 80 on the scale of Orengo et al. (1993)
for structure similarity, were threaded into each of
the 189 representatives of protein structures, which
differ from each other by at least 35% sequence
identity and were selected by Orengo et al. (1993)
(see their Table 1). The 88 proteins are a subset of
the 189 protein representatives whose entry names
are listed in the caption of Figure 6. Coordinate files
with too many unknown atomic coordinates are
excluded from these data sets. Proteins classified
within the multidomain group by Orengo et al.
(1993) are also excluded from the set of sequences
to be threaded.

DElong(eij − err ) is calculated for protein sequences
threaded at all possible positions in all other protein
structures, and their means and standard deviations
are also calculated; no gaps in either the sequences
or the structures are allowed. The positions of the
native energies in the distributions of all threadings
are then measured in units of standard deviation
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(s.d.) where negative values indicate the native
energies are below the mean. Table 5 lists values per
residue, DElong(eij − err )/nr , for the protein sequences
threaded in their own native structures, as well
as the ranks and the positions of the native
energies in units of s.d. in the distributions of all
threadings; proteins are sorted by the increasing
order of the values, in units of standard deviation,
of DElong(eij − err )/nr . Favorable cases for proteins
with more negative values than −5 s.d. are listed in
Table 5A and the unfavorable higher ones in
Table 5B.

For most proteins, the native structures have s.d.
values of DElong(eij − err )/nr significantly large in
magnitude and are ranked at the lowest energy.
However, there are some proteins for which the
native structures are not best or significantly better
than all others. Proteins with values worse (higher)
than −5 s.d., listed in Table 5B, are always membrane
proteins or proteins, whose coordinates are given in
isolated forms without their counterparts, such as
small inhibitors, multimeric proteins and proteins
binding metallic ions or other molecules. The
relative proportions of binding regions on their
surfaces may be significantly large for these small
proteins.

Figure 7 shows the correlation between the
values of DElong(eij − err )/nr in RT units and in s.d.
units. It should be noted that their values in s.d.
units do not depend on the second term of equation
(12), but their absolute values in RT units do. Since
the native energies in s.d. units depend not only on
the native energies but also on the means and
standard deviations of the energy distributions of
threadings, a good correlation is not expected,
especially in the low energy region. However, a fact
that insignificant native folds have relatively high
energies indicates that the energy function,
DElong(eij − err )/nr , may not only be used as an
energy function to evaluate the stabilities of protein
structures for a given sequence, but also as a scoring
function to assess the compatibilities of protein
sequences to a given structure. A more detailed
discussion is planned for a subsequent paper.

Discussion

A basic assumption underlying the present
estimation of contact energies is that, for a large
enough sample, the effects of specific amino acid
sequences will average out, and then the numbers
of residue–residue contacts observed in a large
number of protein crystals will represent the actual
intrinsic interresidue interactions. As already noted
in the original paper, this assumption is compatible
with the ‘‘principle of structural consistency’’
originally proposed by Go (1983) and also called the
‘‘principle of minimal frustration’’ in the energy
landscape view of proteins by Bryngelson &
Wolynes (1987), because the present assumption is
equivalent to the assumption that on average the
intrinsic contact interactions are those consistent
with the high stability of native structures. This

Table 5. Positions of native folds in the energy
distributions of threadings
A. Proteins with favorable native threadings

DElong (eij − err ) In units
PDB name Length Rank Threadings /nr

a of s.db

7AAT-A 401 1 1681 0.17 −11.1
1PGD 469 1 765 0.27 −10.9
1PII 452 1 953 0.18 −10.1
2LIV 344 1 3084 0.35 −9.9
2GBP 309 1 4402 0.32 −9.9
8ADH 374 1 2254 0.29 −9.9
1PHH 394 1 1808 0.31 −9.9
2ER7-E 330 1 3548 0.20 −9.8
4ENL 436 1 1146 0.40 −9.7
2TS1 317 1 3972 0.21 −9.6
1ALD 363 1 2538 0.38 −9.5
1GD1-O 334 1 3406 0.40 −9.5
4FXN 138 1 16,873 −0.10 −9.3
3ADK 194 1 11,413 0.12 −9.1
3PGK 415 1 1426 0.45 −9.1
5TIM-A 249 1 7560 0.18 −8.8
1GKY 186 1 12,058 0.18 −8.8
1RVE-A 244 1 7876 0.24 −8.7
4PFK 319 1 3972 0.41 −8.7
1RHD 293 1 5173 0.31 −8.6
8CAT-A 498 1 548 0.62 −8.6
1IPD 345 1 3052 0.42 −8.6
6XIA 387 1 1953 0.46 −8.5
1MBC 153 1 15,196 −0.01 −8.5
3LZM 164 1 14,113 0.08 −8.4
2FCR 173 1 13,264 0.16 −8.3
1NSB-A 390 1 1889 0.55 −8.3
2TSC-A 264 1 6713 0.16 −8.3
1COL-A 197 1 10,951 0.12 −8.2
8ATC-B 146 1 15,196 0.15 −8.2
3CHY 128 1 18,067 −0.07 −8.2
4PTP 223 1 9338 0.38 −8.1
1PAZ 120 1 19,074 0.11 −7.9
1GCR 174 1 13,171 0.13 −7.8
2TRX-A 108 1 20,669 −0.07 −7.8
4DFR-A 159 1 14,598 0.20 −7.7
2CNA 237 1 8389 0.33 −7.7
4CPV 108 1 20,530 0.14 −7.6
1F3G 151 1 15,407 0.23 −7.6
1COB-A 151 1 15,407 0.31 −7.4
1MSB-A 115 1 19,724 0.22 −7.4
1LZl 130 1 17,821 0.28 −7.4
4CLA 213 1 10,054 0.12 −7.4
2LTN-A 181 1 12,563 0.24 −7.4
5CPA 307 1 4493 0.40 −7.3
4ICB 76 1 25,579 −0.14 −7.3
6LDH 329 1 3548 0.50 −7.2
5P21 166 1 13,922 0.29 −7.2
1RNH 148 1 15,300 0.34 −7.2
1CSE-E 274 1 6151 0.57 −7.0
1BOV-A 69 1 26,735 0.05 −6.9
1FKF 107 1 20,812 0.25 −6.9
1UBQ 76 1 25,579 0.14 −6.8
2AZA-A 129 1 17,943 0.43 −6.8
1YCC 108 1 20,669 0.31 −6.8
1RBP 175 1 13,081 0.45 −6.8
256B-A 106 1 20,957 0.31 −6.7
1ACX 108 1 20,669 0.34 −6.7
1FXD 58 1 28,625 0.31 −6.6
3B5C 86 1 23,674 0.17 −6.5
1LMB-A 87 1 23,056 0.19 −6.5
1GMF-A 119 1 19,203 0.23 −6.4
9RNT 104 1 21,250 0.37 −6.4
2RSP-A 115 1 18,565 0.28 −6.4
9WGA-A 170 1 13,451 0.59 −6.1
7RSA 124 1 18,565 0.53 −6.1
2SIC-I 107 1 20,812 0.40 −6.1
2SAR-A 96 1 22,443 0.40 −5.8
1PRC-Cc 333 1 3441 0.79 −5.7
2PAB-A 114 1 18,692 0.45 −5.7
2HIP-Ad 71 1 26,400 0.37 −5.5
2RHEe 114 1 19,857 0.52 −5.4
5RXNf 54 1 29,347 0.44 −5.0

a Alignment energies per residue in RT units; see equation (12) for
definition.

b The position of the native energy in the distribution of all
threadings in units of s.d., where negative values are for native
energies below the mean.

c Photosynthetic reaction center; four protoporphyrin IX are bound.
d High potential iron sulfur protein; four Fe and four S are bound.
e Bence-Jones protein.
f Rubredoxin; small Fe binding protein.



Residue–Residue Potentials 637

Table 5—continued

B. Proteins with less favorable native threadings
DElong (eij − err ) In units

PDB name Length Rank Threadings /nr
a of s.d.b Comment

2OVO 56 1 28,983 0.56 −4.9 Ovomucoid third domain; 3 S–S bonds
2STV 184 1 11,413 0.72 −4.5 Coat protein of S.T. virus; multimeric
2WRP-R 104 1 20,812 0.60 −4.5 Trp repressor; DNA binding
1SN3 65 5 27,410 0.66 −4.1 Scorpion neurotoxin; membrane binding protein
1TPK-A 88 11 23,674 0.69 −4.1 Tissue plasminogen activator, Kringle-2 domain
3EBX 62 15 27,925 0.78 −3.8 Erabutoxin B; inhibitor to acetylcholine receptor
1UTG 70 15 26,567 0.89 −3.7 Uteroglobin; progesterone binding protein
1PI2 61 26 27,752 0.78 −3.7 Bowman–Birk proteinase inhibitor; no enzyme
5PTI 58 44 28,625 0.75 −3.6 Trypsin inhibitor; no enzyme
2POR 301 3 4778 1.05 −3.3 Porin; integral membrane protein
2CDV 107 50 20,812 1.01 −2.8 Cytochrome c3; small protein with 4 hemes
1CRN 46 >100 30,832 1.01 −2.6 Crambin
1HOE 74 >100 25,905 1.06 −2.2 a-Amylase inhibitor without enzyme
1PRC-L 273 >100 6205 0.88 −2.0 Photosynthetic reaction center; membrane protein
1CY3 118 >100 19,333 1.28 −1.4 Cytochrome c3; small protein with 4 hemes

a Alignment energies per residue in RT units; see equation (12) for definition.
b The position of the native energy in the distribution of all threadings in units of s.d., where negative values are for native energies

below the mean.

assumption is also equivalent to the assumption
that the distribution of the numbers of contacts in
protein structures is a ‘‘self-averaging property’’ in
the terms of Bryngelson et al. (1995), which means
it is, in the present case, the property of
heteropolymers rather than of the detailed amino
acid order of protein sequences. Gutin et al. (1992)
indicated that the Boltzmann-like statistics observed
in protein structures are a general property of
the stable structures of heteropolymer chains, and
that the ‘‘temperature’’ in these statistics is not the
usual temperature of the medium but a ‘‘selective
temperature’’, at which the native structure is
‘‘frozen out’’ from an exponentially large set of
other structures; see also Sǎli et al. (1994) for the
estimation of the selective temperature or critical
temperature.

We have not stated explicitly what temperature
should be taken for the conversion of the contact
energies from RT units to kcal/mol in our original
paper, but a melting temperature is implied, which
is just low enough for the native structure to be
marginally stable and high enough for the energy
landscape of protein to show minimum frustration
and for the ‘‘self-averaging property’’ of contacts to
be satisfied. In the analyses given in our papers
(Miyazawa & Jernigan, 1994, 1985), however, room
temperature was used to translate the RT units into
kcal/mol. The reason is that the contact energies
estimated here are free energies which depend on
temperature. In general, the conformational energy
of a protein is implicitly not an energy but rather a
free energy, because it is usually a potential of mean
force that is obtained by integrating over solvent
coordinates and therefore includes energetic and
entropic solvent effects. Therefore, as long as the
melting temperature is not too far away from room
temperature, it is preferable to use the experimental
room temperature for unit conversions. The use
of average melting temperature or room tempera-
ture for the conversion differs significantly from

the claim of Gutin et al. (1992) that a critical
temperature estimated to be a factor of 1.5 higher
than room temperature should be used for the
conversion, but does not contradict the claim of Sǎli
et al. (1994) that the critical temperature could also
be less than room temperature, because rapid
folding into the stable native structure occurred
slightly above the critical temperature and the
folding temperature could be equated with room
temperature.

The hydrophobic effect is a dominant force in
stabilizing the native structure of a globular protein.
However, there is a lack of agreement as to its
precise magnitude. The hydrophobicity of a small
molecule is usually measured by the transfer
energies, for example, of amino acids from a
non-polar solvent to water. However, it is not
immediately evident that the free energy change
accompanying a process in which residues are
buried in the folding process of protein is the same
as that accompanying the transfer process of amino
acids from water to a nonaqueous solvent, because
both processes are obviously different (Lee, 1993).
In our previous work on contact energies, we
pointed out that the estimates of the contact
energies of amino acid side-chains were almost
twice as large in magnitude as the usual estimates
of hydrophobicities from the transfer energies of
Nozaki & Tanford (1971). In order to measure
directly the contribution of the hydrophobic effect
to the stability of proteins, many experiments
measuring the stability change caused by amino
acid replacements have been performed (Yutani
et al., 1984; Matsumura et al., 1988; Shortle et al.,
1990). These experiments showed that the unfolding
free energy changes upon single amino acid
replacements could be significantly larger in
magnitude than those expected from the transfer
free energies of amino acids (Yutani et al., 1984;
Shortle et al., 1990), but were also highly variable
(Shortle et al., 1990).
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Figure 7. The correlation between the values of
DElong(eij − err )/nr of the native structures of 88 proteins in
RT units and those in standard deviation units from its
distribution of threaded structures. A total of 88 proteins
determined to a resolution better than 2.5 Å by X-ray
analyses, which are structurally dissimilar to each other
with values smaller than 80 on the scale of Orengo et al.
(1993) for structure similarity, are threaded into each of
the 189 representatives of protein structures, which differ
from each other by at least 35% sequence identity and
were those selected by Orengo et al. (1993) (see their
Table 1). DElong(eij − err )/nr is then calculated according to
equation (12) for all threadings, with no gaps allowed, and
its mean and standard deviation are calculated. The 189
protein representatives are the same ones used for Figure
6. A total of 88 proteins are a subset of these 189 protein
representatives and are listed in Table 5. Coordinate files
with too many unknown atomic coordinates are excluded
from these data sets. The correlation coefficient is 0.75.

not fully account for changes in volume entropy, and
they provided new estimates by including a volume
correction term. Their overall estimates were almost
twice as large as the previous ones and similar in
magnitude to the estimates in this work of the
contact energies for the transfer energy of side-
chains from the outside to the interior of a protein.
Pace (1992) also reported that the estimate of
hydrophobicity with the volume correction could
explain the values of unfolding free energy changes
observed for 72 aliphatic side-chain mutants from
four proteins in which a larger side-chain was
replaced by a smaller side-chain.

As shown in Figure 3, the estimates by Sharp et al.
(1991) of the transfer free energies between octanol
and water for non-polar side-chains are almost
identical with the present estimates of equivalent
quantities for hydrophobic side-chains. Here, it
should be noted that the contributions of amino acid
side-chains to the contact energy are calculated to
be equal to the difference of the contact energies
between Gly and other amino acids and these
estimates are expected to be more reliable than the
absolute values of the contact energies of amino
acids.

Miyazawa & Jernigan (1994) showed, based on
the previous estimates of contact energies, that the
contact energy changes of protein structures due to
single amino acid replacements were large enough
to account for the observed values of unfolding
free energy changes. Also, the large variation of
unfolding free energy changes among residue
positions for single amino acid replacements,
observed by Shortle et al. (1990), was accounted for
if the free energy changes in the denatured state
were taken into account. The free energy change in
the denatured state of a protein due to single amino
acid replacements had not been considered and
had usually been ignored. The large variation of
unfolding free energy changes may be due to the
different environments surrounding each residue in
both the native structure and the denatured state.
Miyazawa & Jernigan (1994) indicated that staphylo-
coccal nuclease, under the experimental conditions
of Shortle et al. (1990), was not fully expanded in the
denatured state and also that the compact de-
natured state might have a substantially native-like
topology.

In the original work to evaluate the contact
energies, the number of protein structures used
was only 42, including 30 monomeric proteins
(Miyazawa & Jernigan, 1985). These proteins were
chosen with the criteria that their chain lengths
were longer than 100 residues and that few atomic
positions were missing. Also, in cases where
coordinates are available for several closely homolo-
gous proteins, only one representative was used; the
minimum difference between amino acid sequences
for homologous proteins was 50%. The numbers of
contacts were calculated for the complete assembly.
Now, more than 1000 protein structures are
available. Here, we use only the coordinates of
subunits as given in the PDB files, without

The effect of a cavity created by such amino acid
replacements was considered to be one of the factors
causing this discrepancy (Shortle et al., 1990;
Nicholls, 1991). Eriksson et al. (1992) reported that
the unfolding free energy changes showed corre-
lations with the increases in the sizes of cavities
observed in the protein structures of mutant T4
lysozymes, and that the value of the unfolding free
energy change extrapolated to zero cavity size
coincided with the value expected from the transfer
free energy of an amino acid. Lee (1993) estimated
the free energy changes for cavities formed by
replacing a bulky side-chain with a smaller
side-chain, assuming the protein structure to
remain completely rigid. He pointed out that most
experimental values of unfolding free energy
changes for such replacements fell into a range
between the maximum expected for the full cavity
size and the minimum expected for no cavity,
because rearrangement of the protein occurs to fill
the cavity.

On the other hand, Sharp et al. (1991) argued that
the previous estimates of the hydrophobic effect
derived from analyses of solute partition data did
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calculating any additional subunit intersections.
That is, if a PDB file is given in a monomeric
state, the numbers of contacts have been counted
in the monomeric state, even though matrices to
generate multiple symmetric subunits are given
in the PDB file. The ratio of molecular surface
contacts to the total number of contacts

6 Nro

(Nrr + Nro)
is about 0.33.

Generally, subunit–subunit interfaces and en-
zyme–substrate interfaces are not the major por-
tion of a molecular surface. Therefore, ignoring
the molecular binding in some proteins should
not affect the estimated values of contact energies
so much.

There are many homologous proteins in the PDB.
Any statistical analysis of sequence–structure
relations of proteins requires an unbiased sampling
of proteins. One way is to choose representative sets
of proteins that are sufficiently dissimilar to each
other. Usually, selections of protein representatives
are based on sequence dissimilarity (Hobohm et al.,
1992) or structure dissimilarity (Orengo et al., 1993;
Fischer et al., 1996). The alternative method used
here is to assign a different sampling weight to each
protein according to the extent of redundancy
(sequence identity), to remove sampling bias. This
has not been done previously, but we show that
such a sampling weight for each protein can be
based on a similarity matrix between proteins in the
data set. Here, each element of the similarity matrix
has been evaluated as the ratio of identical residues
between aligned protein sequences, and then the
sequence identity matrix has been diagonalized.
The present data set contains 1661 protein
sequences. To reduce computational time for the
calculation of the 1661 by 1661 sequence identities
among sequences and for diagonalization of the
resulting sequence identity matrix, the matrix size
was reduced by regarding highly similar sequences
as identical, i.e. if they are more than 95% identical.
If sequence identities lower than a certain value
ought to be ignored, then matrix elements of
sequence identity, equation (44), whose values fall
below a threshold value, could be replaced by zero;
30% identity, where sequence pairs may be
evolutionally unrelated, may be a good choice for
such a threshold. For statistical analyses similar to
the present one, this method will certainly be better
if homologous proteins are equally good structures,
because all available data are used and then the
statistical error becomes lower for a larger number
of samples.

Remarkably, all characteristics of the contact
energies found in the original analysis hold for the
present results, for which the total effective number
of contacts is 6.3 times more than in the original
data. The new values differ from the original
estimates of the contact energies to a significant
extent only for the infrequent amino acids Trp and
Met and the one other exception, Leu. The reason

why the contacts with Leu are more frequently
observed is not clear.

The contact energies are attractive energies only,
and volume exclusion between residues needs to
be taken into account, unless a lattice model with
a coordination number small enough to prevent
overpacking is used. In a lattice model, volume
exclusion between residues can be satisfied
readily by assuming that a lattice site cannot be
occupied by multiple residues. When a lattice
model is not used, a repulsive potential is needed
for evaluation of the conformational packing
energy of a protein. This has been one motivation
for the present work. The van der Waals’ surfaces
of side-chains are highly anisotropic, making
spherically symmetric repulsive potentials inap-
propriate to represent effective two-body repulsive
interactions between two residues. The present
many-body potential has been formulated to
depend instead on packing density to represent
the repulsive interactions around a central residue
in a protein and to treat packing density effects
more realistically than would be possible with a
spherically symmetric two-body potential. How-
ever, such a repulsive potential is not in effect for
small numbers of neighboring residues. In ad-
dition, there is a hard core, which cannot be
penetrated, for any side-chain with any confor-
mation. However, a preliminary investigation
showed that there is relatively little residue type
dependence for these hard cores, and that the
minimum size of such a hard core may correspond
closely to the van der Waals’ size of a methyl
group. Therefore, the repulsive potential between
residues here is represented as the sum of two
kinds of potentials, a hard core potential that is a
two-body potential and a repulsive packing
potential that is a many-body potential depending
on the number of residues immediately surround-
ing a residue. The repulsive packing potentials for
20 types of amino acids have been estimated as a
function of the number of contacts from the high
density portion of the distributions observed in
known protein structures. This tail portion of the
distribution, which is defined as the region of high
coordination numbers of amino acids, should
reflect the effective repulsive packing energy
between residues.

We have shown how this new potential for
interactions among residues can be used to calculate
the total energies of a set of proteins and how these
energies behave roughly as expected. Also, calcu-
lations of threading sequences into other folds have
demonstrated that the native structures have the
lowest alignment energies of residues among all
other folds for most of protein representatives in
the PDB, the exceptions being proteins such as
membrane proteins and others having bound
ligands. The application to threading here may not
be the most demanding test of the potentials,
because it only requires discrimination among
relatively few conformations. However, the results
are excellent and give, at least, a taste of the level
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of success achievable with it. This new potential
is appropriate for application to a broad range
of protein conformation simulations and inverse
folding calculations.

Methods

Long-range inter-residue interaction energy

Long-range interaction energies are simplified for
inter-residue interactions at the residue level without
any atomic details of side-chains. They are approxi-
mated to consist of two terms, a short-range attractive
term that becomes effective only when two residues are in
close proximity, and a repulsive term that results from the
overlap of residues at high packing densities. In the case
of a lattice model, volume exclusion between residues is
implicitly included in the model, because a site cannot be
occupied by more than one residue. However, if
conformational space is defined continuously rather than
discretely, a repulsive energy potential is essential to
account for volume exclusion among residues. In the
following, the long range inter-residue energy of a protein
is represented as a sum of these two terms over all
residues in a protein:

Elong = s
p

(Ec
p + Er

p ) (13)

where p is a residue sequence index in a protein.

Contact energy

Residues are represented by single points at the
centers of their side-chain atom positions; the positions
of Ca atoms are used for glycine residues. Residues
whose centers are closer than Rc are defined to be
in contact. The limiting value Rc = 6.5 Å for contacts
was chosen on the basis of the occurrence of the first peak
in the radial distribution of residues in the interior
of proteins (Miyazawa & Jernigan, 1985).

Intra-residue interactions and nearest-neighbor inter-
actions also lead to contact formation among nearest
neighbor residues, and therefore in the present evaluation
of the long range interactions, these nearest-neighbor
contacts are explicitly excluded.

Thus, a contact between the pth and qth residues is
defined using:

Dc
pq060 if =p − q =E1

H(Rc − dpq ) if =p − q = > 1
(14)

Rc06.5 Å (15)

where H is the Heaviside function defined as:

H(x)061 if xe0

0 if x < 0
(16)

and dpq is the distance between the pth and qth
residues. Maiorov & Crippen (1992) pointed out that,
in the use of discrete functions for the definitions of
contacts, slight changes in interatomic distances can
produce significantly different lists of contacts. Since
residue–residue contacts are defined here by using
the distance between their side-chain centers, they
are relatively insensitive to small variations in inter-
atomic distances. However, a sigmoidal function with

a transition width of about 1 Å might have been
used to advantage, instead of the Heaviside function,
in equation (16) to account for uncertainties in
the boundary region. The number of residues of type j
in contact with the pth residue whose amino acid is ip

type is:

nc
ipj = s

q($p)

djqjDc
pq (17)

where d is the Kronecker d function.
The contact energy for the pth residue, Ec

p , in which the
energy of a conformation with no residue–residue
contacts is defined to be zero, is represented as:

Ec
p (eij ) = 1

2 s
q($p)

eip jq Dc
pq (18)

= 1
2 s

j($0)

eip jnc
ipj (19)

where eij is the energy difference accompanying the
formation of contacts between i and j types of amino acids
from those amino acids exposed to solvent, and is defined
as follows (Miyazawa & Jernigan, 1985):

eij0Eij + E00 − Ei0 − Ej0 (20)

where 0 means effective solvent molecules, and E00 and
Ei0 are the absolute interaction energies between a pair
of solvents and between an i type of residue and
an effective solvent, respectively. Here, it should be
noted that a lattice model is used to take account of
interactions among solvent molecules and amino acids
in a protein. Residues in a protein are assumed to
occupy lattice sites or cells as a linear chain. Each
vacant cell is regarded as being occupied by an effective
solvent molecule.

nc
ipj can be summed to produce the following equation:

nij = 1
2 s

p

s
q($p)

Dc
ipiDc

jqj = 1
2 s

p

nc
ipjdipi (21)

1
2 qini = s

j = 0

nij (22)

nij = nji (23)

where nii and 2nij are the total numbers of contacts
between two residues of the same type, i, and between
i and j types of amino acids; ni is the total number of i
type amino acids in a protein and qi is the coordination
number for the i type of amino acid, that is, the average
number of residues that completely surround the i type
of amino acid. Let us define here the following quantities
for the typical residue r:

nir = nri0 s
j($0)

nij (24)

nrr0 s
i($0)

nir (25)

nr0 s
i($0)

ni (26)

The summations above are taken over all 20 amino acid
types.
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How to estimate contact energies

The contact energies have been re-evaluated by using
a newer, much larger protein data set with the same
procedure described by Miyazawa & Jernigan (1985), in
which the following assumptions and approximations
were employed; the original notation is used here.

(1) For a large enough sample, the effects of specific
amino acid sequences average out and the numbers of
non-bonded residue–residue contacts observed in a large
number of protein crystal structures will then represent
the actual intrinsic differences of interactions among
residues in proteins. Of course, nearest-neighbor contacts
along chains are significantly affected by the amino acid
sequences of proteins. Therefore, the contacts between
nearest-neighbor residues are explicitly excluded in the
counting of contacts. The effect of a protein being a chain
may remain and might affect somewhat the observed
number of residue–residue contacts. Therefore, the
contact energies estimated here should be regarded as
effective inter-residue energies.

(2) By taking account of the effects of the chain
connectivity as imposing a limit to the size of the system,
i.e. the total number of lattice sites, the system is then
regarded as an equilibrium mixture of unconnected
residues and effective solvent molecules.

(3) The Bethe approximation (quasi-chemical approxi-
mation), which gives an exact solution for the Bethe
lattice, and in which contact pair formation can be
regarded as a chemical reaction, is used to estimate the
contact energies from the numbers of contacts observed in
known protein structures. In the Bethe approximation, eij

satisfies the following equilibrium equation:

exp(−eij ) = n̄ijn̄00

n̄i0n̄j0
(27)

where n̄ij represents the statistical average of nij . Note that
all energies here are taken to be dimensionless, i.e. in
units of RT. Usually this equation is used to evaluate n̄ij

from known eij , but it is used inversely here to estimate
the contact energies from the numbers of contacts
observed in known protein structures. However, the
equation above includes n00, the number of contacts
between effective solvent molecules, which is rather
difficult to estimate accurately. However, the differences
between contact energies, such as e'ij defined in the next
paragraph, do not depend on n00 and so the estimates of
such relative quantities ought to be more reliable than the
absolute values of contact energies; e.g.:

exp(eij − ekl ) = n̄ijn̄k0n̄l0

n̄i0n̄j0n̄kl
(28)

does not include n00.
(4) n00 is evaluated through an estimation of the

number of effective solvent molecules. The number of
effective solvent molecules for each protein is chosen to
yield the total number of residue–residue contacts equal
to its expected value for the hypothetical case of hard
sphere interactions with eij = 0 among residues and
effective solvent molecules, representing the effects of
chain connectivity. An effective solvent molecule is taken
to have the same volume (of water molecules) as an
average residue.

(5) The numbers of contacts, nij , are counted for each
protein structure and the sums of nij over all protein
samples, Nij , are calculated. The numbers of contacts with
effective solvent molecules, ni0, are estimated with
equation (22); the coordination number for each amino
acid type is estimated from the volume of each type of

amino acid at the center and the average volume of its
surrounding residues. That is, incomplete coordination
spheres are completed with solvent molecules. Then, the
contact energies are estimated from Nij with a compo-
sition correction, so that if all residues and effective
solvent molecules were randomly mixed, the estimated
values of the contact energies would be zero:

e'ij = − 1
2 ln0N2

ijCiiCjj

NjjNjjC2
ij1 for i, j$0 (29)

e'i0 = − 1
2 ln0 N2

i0

NiiN00

C'iiC'00

C'2i0 1 (30)

where:

e'ij0eij − (eii + ejj )/2 (31)

eij = e'ij + e'00 − e'i0 − e'j0 (32)

Cij and C'ii are correction factors and are equal to the
number of contacts expected between residues of i and j
types and the number of contacts expected between
residues of the same type i, respectively, when residues
and effective solvent molecules are randomly mixed; see
equations (10) to (15) of Miyazawa & Jernigan (1985) for
their detailed definitions. e'ij is the energy difference
detailing the residue interaction specificity accompanying
the formation of a contact pair i–j from contact pairs i–i
and j–j.

According to the procedure described by Miyazawa &
Jernigan (1985) and briefly summarized above, the contact
energies, eij , between i and j types of amino acids are
re-evaluated with equations (29) and (30) above, or
equations (10) to (15) of Miyazawa & Jernigan (1985).
However, the further useful quantities for interactions
with the average residue r are defined as:

exp(−eir )0n̄irn̄00

n̄i0n̄r0
(33)

exp(−err )0n̄rrn̄00

n̄r0n̄r0
(34)

These are not estimated by the procedure described in the
earlier paper, but directly from the data by the following
equations:

eir = e'ir − e'i0 − e'r0 (35)

e'ir = − 1
2 ln(Cii /Nii ) (36)

err = −2e'r0 = ln(C'00/N00) (37)

As stated by Miyazawa & Jernigan (1985), if eir is more
negative than err , then amino acids of the i type will tend
to be buried inside a protein; otherwise, they will tend to
be exposed to solvent on the surface of the protein.

Also, the average contact energy of each type of amino
acid is estimated by:

ei = s
j($0)

eijNij /Nir (38)

er = s
i($0)

eiNir /Nrr (39)

ei may be used to compare with other estimates of
hydrophobic energies. However, eir will be more
appropriate as a one-dimensional measure of hydropho-
bicity. ei and eir correspond to the mean energy and the
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effective mean energy, respectively; refer to equation (35)
of Miyazawa & Jernigan (1985).

Repulsive energy

Here, each residue has been represented by the point
at the center of its side-chain heavy atom positions.
Generally, the van der Waals’ surface of a side-chain is
highly anisotropic, and its hard core would not be
well represented by a sphere. However, if a repulsive
potential between residues is averaged over all
possible side-chain conformations, then the anisotropic
character in the average repulsive potential will be
weakened by the flexibility manifested in the side-chain
conformations. Therefore, a symmetric repulsive potential
is appropriate at the present level of simplification.
However, a repulsive force resulting from van der Waals’
overlaps is a very short range force, and therefore even
a soft core symmetric repulsive potential may be
inappropriate. Here, the repulsive force of van der Waals’
overlaps is approximated as the sum of two terms, a
hard core repulsion between residues and a repulsive
packing potential, depending on the packing density of
residues:

Er
p = ehc

p + er
p (40)

The hard core potential is taken, in turn, as a two-body
interaction potential given by:

ehc
p 01

2 s
q($p)

ehcH(rc − dpq ) (41)

ehc is the parameter for the positive energy of hard core
repulsion and will have a large positive value. Depending
on side-chain conformation, the side-chain centers of two
residues can sometimes come as close as the van der
Waals’ separation between two methyl groups. Therefore,
the hard core radius, rc/2, is independent of residue type
and here is simply the van der Waals’ core of a methyl
group, with a value of 1.9 Å.

The repulsive packing potential is a many-body
interaction potential dependent on nc

p , the number of
residues in contact with the pth residue:

nc
p0 s

j($0)

nc
ipj (42)

This packing density energy in RT units is estimated as
follows:

er
p0H(nc

p − qip ) $0qip

nc
p

− 11 Ec
p − ln0N(ip , nc

p ) + e
N(ip , qip ) + e1% (43)

N(i, nc) is the total number of residues of type i that are
surrounded by nc residues in the set of protein structures.
The value of N(i, qi ) is obtained by interpolation. To avoid
the divergence of the logarithm function in equation (43),
a small positive number, e, has been added to both the
numerator and the denominator, so that the sum of the
contact energy and repulsive energy takes on a positive
value even at N(i, nc) = 0 for any amino acid; here, a value
of e = 10−6 is employed.

The first term of the repulsive packing potential in
equation (43) represents the effect of exceeding the
limiting number of contacts, which is equal to the
coordination number qip , to offset the extra contact
energy; the actual value of Ec

p from equation (19) is
used. The second term is estimated from the ratio of

the observed frequency of packing density to that
for the limiting value for packing density. The repulsive
energy is applied through the Heaviside function only
if the number of surrounding residues exceeds a
threshold value, qip . The distribution of the number of
contacts for each amino acid is assumed in the Bethe
approximation to be determined by the contact energies,
except for the high density region, which should reflect
the repulsive energies among residues. It can be seen
in Table 3 that the estimated coordination numbers for
the 20 types of amino acids here range only from 5.79 for
Trp to 6.65 for Cys.

Protein structures used in the present
statistical analysis

The proteins used here are all those in the Protein Data
Bank (PDB) (Bernstein et al., 1977) that satisfy the
following conditions.

(1) Proteins whose structures are determined by X-ray
analysis and whose resolution is equal to, or better than,
2.5 Å. All protein structures determined by NMR are
excluded.

(2) Protein subunits composed of 50 or more residues.
(3) Membrane proteins are excluded, because, inappro-

priate to them, it is assumed that incomplete coordination
spheres are completed with water molecules. Thus, the
number of inter-residue contacts compiled here are those
observed only in soluble proteins in order to derive
contact energies appropriate for soluble proteins. How-
ever, some characteristics of neighbor pairs might be
preserved, except for the overall inversion of structure
compared to soluble proteins.

The number of protein subunit structures satisfying these
criteria is 1661 (see Table 1).

In this data set, there are many proteins whose
sequences are similar to one another. To obtain
statistically unbiased results, unbiased sampling is
required. There are two ways to do this: either (i) use
protein representatives that are sufficiently dissimilar to
each other in their sequences; or (ii) use a different
statistical weight for each protein related to its extent of
similarity to other sequences. So far, most statistical
analyses have used a representative set of proteins.
Usually, protein representatives are chosen by specifying
an upper limit for sequence identity (Hobohm et al., 1992)
or structural similarity (Orengo et al., 1993; Fischer, et al.,
1996, among them). However, it is not clear what value
is best as an upper limit of similarity in protein
representatives. Also, in such a method, many good
structures may be discarded. In this work, the second
approach has been taken.

Sampling weight

A sequence identity matrix is defined here as:

Is
mn0sequence identity between sequence m and n

0

2 × (number of identical
residues in the alignment)

(length of sequence m)
+ (length of sequence n)

(44)

The sequence identity is taken as the fraction of identical
residues in the alignment of two sequences. The sequence
identity matrix is a real symmetric, non-negative matrix.
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Each element of Is
mn is between 0 and 1, and the diagonal

elements are equal to one:

0EIs
mn = Is

nmE1

Is
mm = 1 (45)

The sequence identity matrix is similar to a correlation
matrix in the sense that the value of Is

mn represents the
correlation between the amino acid sequences m and n.
Let us define lm as the mth eigenvalue and Vm the mth
column eigenvector that is orthogonal to all others and
normalized to be equal to one. That is:

IsVm = lmVm (46)

VT
m Vn = dmn (47)

VT
m means the transpose of Vm. The total sum of the

eigenvalues is equal to the trace of the sequence identity
matrix, and so it is equal to the number of sequences
used:

s
m

lm = Tr Is = s
m

1 = Nprot (48)

where Nprot is the number of sequences used. From
equation (45), it follows that a sequence identity matrix
must be positive semidefinite:

0EliENprot (49)

Let us consider some special cases. If a whole set of
sequences can be divided into groups where individual
sequences from different groups are completely dissimi-
lar, each group can be handled independently. In case
there is a sequence which is completely dissimilar to any
other sequence, at least one eigenvalue will be equal to
one. If all sequences are the same, all other eigenvalues,
except one, must be equal to zero; if Is

mn = 1 for any m and
n, rank Is = 1, and therefore the number of non-zero
eigenvalues must be equal to one.

On the basis of these characteristics, the following
procedure may be used to remove redundant information
that comes from similarities among sequences. The
sampling weight, wn for the nth sequence is taken to be:

wn00sm (lm − (lm − 1) · H(lm − 1)) · VmVT
m1nn

(50)

0 < wnE1 (51)

This definition of sampling weight satisfies all require-
ments. If, and only if, a sequence has zero sequence
identity with any other sequence, then the sampling
weight for that sequence will be equal to one. If Nprot

sequences in the data set are all identical, then the
statistical weights for those sequences will be equal to
1/Nprot. Generally, sampling weights take a value between
one and 1/Nprot, and are approximately equal to the
inverse of the number of similar sequences. The effective
number of proteins can be defined as the total sum of the
sampling weights:

Neffective
prot 0s

m
wmENprot (52)

In a similar way, the effective number of residues is
defined.

Please note the use of sequence identity here. Although
this approach for weighting could be used equally well
with any sequence similarity measure, the present
problem dictates that only identities be considered;

otherwise part of the data for deriving contact pairs would
have been discarded.

The number of protein subunits chosen according to
the criteria described in the previous section is more than
1600. To reduce computational time expediently for the
calculation of the sequence identity matrix and its
diagonalization, proteins that have more than 0.95
sequence identity are regarded as the same sequence and
are removed from the sequence identity matrix. Then a
statistical weight for each of the individual proteins is
taken to be wm/m, where wm is the weight for that protein
family m, and m is the number of members in the family.
Protein representatives for this purpose are chosen in the
following procedures. (1) If a protein is less similar than
0.95 sequence identity to any protein representative
already chosen, this protein is regarded as a new protein.
(2) The above procedure is iterated until all proteins are
examined. There are 424 protein representatives remain-
ing with less than 0.95 sequence identity to any other in
the PDB, and the total effective number of proteins is
found with equation (52) to be 251.
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