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Abstract

Background: Empirical substitution matrices represent the average tendencies of substitutions over various protein families
by sacrificing gene-level resolution. We develop a codon-based model, in which mutational tendencies of codon, a genetic
code, and the strength of selective constraints against amino acid replacements can be tailored to a given gene. First,
selective constraints averaged over proteins are estimated by maximizing the likelihood of each 1-PAM matrix of empirical
amino acid (JTT, WAG, and LG) and codon (KHG) substitution matrices. Then, selective constraints specific to given proteins
are approximated as a linear function of those estimated from the empirical substitution matrices.

Results: Akaike information criterion (AIC) values indicate that a model allowing multiple nucleotide changes fits the
empirical substitution matrices significantly better. Also, the ML estimates of transition-transversion bias obtained from
these empirical matrices are not so large as previously estimated. The selective constraints are characteristic of proteins
rather than species. However, their relative strengths among amino acid pairs can be approximated not to depend very
much on protein families but amino acid pairs, because the present model, in which selective constraints are approximated
to be a linear function of those estimated from the JTT/WAG/LG/KHG matrices, can provide a good fit to other empirical
substitution matrices including cpREV for chloroplast proteins and mtREV for vertebrate mitochondrial proteins.

Conclusions/Significance: The present codon-based model with the ML estimates of selective constraints and with
adjustable mutation rates of nucleotide would be useful as a simple substitution model in ML and Bayesian inferences of
molecular phylogenetic trees, and enables us to obtain biologically meaningful information at both nucleotide and amino
acid levels from codon and protein sequences.
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Introduction

Any method for inferring molecular phylogeny is implicitly or

explicitly based on the evolutionary mechanism of nucleotide or

amino acid substitutions, and the reliability of phylogenetic

analyses strongly depends on models assumed for the substitution

processes of nucleotide and amino acid. Mutational events occur

at the individual nucleotide level, but selective pressure primarily

operates at the amino acid level. Thus, a codon-based model of

amino acid substitutions has a potential to be preferable to both

mononucleotide substitution models [1–3] and amino acid

substitution models [4–12], because it can take into account both

mutational tendencies at the nucleotide level and selective pressure

on amino acid replacements as well as the knowledge of a genetic

code. Schneider et al. [13] and Kosiol et al. [14] empirically

estimated a codon substitution matrix from a large number of

coding sequence alignments. However, the tendencies of substi-

tutions differ among nuclear, mitochondrial [6], and chloroplast

genes [8]. Delport et al. [15,16] pointed out that empirical

substitution matrices represent the average tendencies of substitu-

tions over various protein families by sacrificing gene-level

resolution. A mechanistic codon substitution model, in which

one can change a genetic code, and adjust mutational tendencies

at the codon level and selectional preferences on amino acid

replacements, is potentially more superior than empirical codon

substitution matrices.

A main difference between the current mechanistic codon

substitution models [7,15–24] resides in the estimation of selective

constraints against amino acid replacements. (1) In [19,20,22], the

difference between nonsynonymous and synonymous substitution

rates was taken into account but the amino acid dependences of

selective constraints were not taken into account; i.e., single

selective constraints. (2) In [7,17,18], selective constraints against

amino acid replacements were evaluated from physico-chemical

properties of amino acids. (3) In [21,23,24], codon exchangeabil-

ities for nonsynonymous changes were evaluated from those in

empirical amino acid substitution matrices. (4) In [15,16], selective

constraints were grouped, and the number of groups and the

strength of selective constraint of each group were optimized for a

given protein phylogeny. The fourth method has the highest
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resolution of selective constraints employing as many substitution

groups as necessary. However, it seems to be a very computer-

intensive calculation [16]. Here, we try to estimate selective

constraint for each type of amino acid replacement by maximizing

the likelihood of individual empirical substitution matrices. Unlike

the present method, in the previous methods of this third category

codon exchangeabilities for nonsynonymous changes were as-

sumed to be proportional to the corresponding amino acid

exchangeability [23], or a codon substitution matrix was restricted

to yield amino acid exchangeabilities equal to empirically-derived

ones [21]. The empirical substitution matrices fitted are 1-PAM

amino acid substitution frequency matrices, the JTT matrix [5],

the WAG matrix [10], and the LG matrix [11], evaluated from

relatively large data of nuclear-encoded proteins, the mtREV

matrix [6] from vertebrate mitochondrial proteins, and the

cpREV matrix [8] from chloroplast-encoded proteins, and also a

1-PAM codon substitution frequency matrix (KHG) [14]. In the

following, these empirical substitution frequency matrices corre-

sponding to 1 PAM will be simply referred to by their common

acronyms, JTT, WAG, LG, KHG, mtREV, and cpREV.

In most of the reversible Markov models for codon substitutions,

instantaneous rates for codon substitutions that require multiple

nucleotide changes were assumed to be equal to 0. [15,17–19].

However, in all empirical substitution matrices unnegligible

amounts of rates are assigned to amino acid replacements that

require multiple nucleotide changes. Variations in substitution

rates or time intervals would yield significant amounts of

probabilities for the multi-step substitutions. Alternative explana-

tion is that the significant fraction of these substitutions occurred

with multiple nucleotide changes. Thus, both of them are taken

into account in the present work. It is assumed that substitution

rates are distributed with a C distribution. The use of C
distribution for rate variation has been attempted in many studies

[25,26]. Multiple nucleotide changes are assumed to occur in the

same order of time as single nucleotide changes do.

Interdependence of nucleotide substitutions at three codon

positions [7] and also spanning codon boundaries [20] have been

pointed out. Evidences for a high frequency, which is the order of

0.1 per site per billion years, of double-nucleotide substitutions

were found in diverse organisms by Averof et al. [27], although

there is a report [28] indicating a low rate of double-nucleotide

mutations in primates. Bazykin et al. [29] pointed out a possibility

of successive single compensatory substitutions for multiple

nucleotide changes. Recently, many codon models relaxing

mathematical assumptions in a more sophisticated way than the

models of Goldman and Yang [18] and Muse and Gaut [19] are

devised to study and to detect evidence of positive selection in

codon evolutionary processes; see Anisimova and Kosiol [30] for a

review.

In the Singlet-Doublet-Triplet (SDT) mutation model [20],

single-nucleotide, doublet and triplet mutations spanning codon

boundaries are taken into account, but double nucleotide

mutations at the first and the third positions in a codon were

not taken into account. The dependences of selective constraints

on amino acid pairs were not taken into account. In the present

model, it is assumed that nucleotide mutations occur indepen-

dently at each codon position and so any double nucleotide

mutation occurs as frequently as doublet mutations. The codon

substitution rate matrix of KHG [14] indicates that some types of

double nucleotide mutations at the first and the third positions

frequently occur.

Close relationships between selective constraints on amino acids

and physico-chemical properties of amino acids and protein

structures have been pointed out [4,9,17,31–34]. We suppose that

the relative strengths of selective constraints among amino acid

pairs do not strongly depend on species, organelles, and even

protein families but amino acid pairs. Then, we examine the

performance of the present codon-based model, in which selective

constraints are approximated to be a linear function of those

estimated from JTT, WAG, LG, or KHG, in respect of how well

other empirical substitution matrices including cpREV and

mtREV can be fitted by adjusting parameters such as mutational

tendencies and the strength of selective constraints. It is shown that

these maximum likelihood (ML) estimators of the selective

constraints perform better than any physico-chemical estimation.

It is also indicated that the present model yields good values of

Akaike information criterion (AIC) for a phylogenetic tree of

mitochondrial coding sequences in comparison with the codon

model almost equivalent to mtREV. If the present model is

applied to the ML inference of phylogenetic trees, it will allow us

to estimate mutational tendencies at the nucleotide level, which

are specific to each species and organelle, such as transition-

transversion bias and the ratio of nonsynonymous to synonymous

rate. One of the interesting results revealed by the present model is

that the ML estimators of transition to transversion bias calculated

from the empirical substitution matrices are not so large as

previously estimated. Also, AIC values indicate that a model

allowing multiple nucleotide changes fits the empirical substitution

matrices and the phylogeny of vertebrate mitochondrial proteins

significantly better.

The present codon-based model with the new estimates for

selective constraints on amino acids is useful as a simple

evolutionary model for phylogenetic estimation, and also useful

to generate log-odds for codon substitutions in protein-coding

sequences with any genetic code.

Methods

A mechanistic codon substitution model with multiple
nucleotide changes

In early codon substitution models [17,18], the probabilities of

multiple nucleotide replacements in the infinitesimal time

difference Dt were completely neglected by assuming them to be

O(Dt2), when the probabilities of single nucleotide replacements

are taken to be O(Dt). In other words, the instantaneous mutation

rate Mmn from codon m to n was assumed to be equal to zero for

codon pairs requiring multiple nucleotide replacements. However,

multiple nucleotide mutations may not be neglected in real protein

evolution [7,14,20,27,29,35]. Here, multiple nucleotide changes

are assumed to occur with the same order of time as single

nucleotide changes occur, but unlike the SDT model [20] a

mutation process is simplified in such a way that mutations

independently occur at each position of a codon. Thus, the

mutation rate matrix for a codon is defined here as

Mmn: P
3

i~1
½dmini

z(1{dmini
)(Bi)mini

� for m=n ð1Þ

where Bi is a mutation rate matrix between the four types of

nucleotides at the ith codon position, dmini
is the Kronecker’s d, and

the index mi means the ith nucleotide in the codon m; m~(m1,m2,m3)
where mi[fa, t, c, gg. Assuming that the rate matrix Bi satisfies the

detailed balance condition, it is represented as

(Bi)mini
~(mi)mini

f mut
i,ni

for i~1,2,3 ð2Þ
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(mi)mini
~(mi)nimi

ð3Þ

f mut
n~(n1,n2,n3)~f mut

1,n1
f mut
2,n2

f mut
3,n3

ð4Þ

where f mut
i,ni

is the equilibrium composition of nucleotide ni at the

ith codon position, and (mi)mini
is the exchangeability between

nucleotides mi and ni at the ith codon position. As a result of the

detailed balance condition assumed for the Bi, the M also satisfies

the detailed balance condition;

f mut
m Mmn~f mut

n Mnm ð5Þ

The instantaneous substitution rate Rmn from codon m to n can

be represented as the product of the mutation rate Mmn and the

fixation probability Fmn of the mutations under selection pressure;

Rmn! MmnFmn for m=n. Let us assume that the R also satisfies the

detailed balance condition; that is,

fmRmn~fnRnm ð6Þ

where fm is the equilibrium codon composition of the substitution

rate matrix R. The detailed balance condition Eq. 6 for the R is

equivalent with a condition that Rmn can be expressed to be a

product of the (m,n) element of a symmetric matrix and the

equilibrium composition fn. Similarly, the detailed balance

condition Eq. 5 for the M is equivalent with a condition that

the matrix whose (m,n) element is equal to Mmn=f mut
n is symmetric.

Thus, the detailed balance conditions for the M and the R
require that the fixation probability Fmn must be represented as

the product of frequency-dependent, fn=f mut
n , and frequency-

independent, ewmn , terms; Fmn~(fn=f mut
n )ewmn for m=n, where

wmn~wnm. Then, the codon substitution rate Rmn can be

represented as

Rmn~Const Mmn
fn

f mut
n

ewmn for m=n ð7Þ

where Const is an arbitrary scaling constant. The unit of time is

chosen by determining the arbitrary scaling constant Const in Eq. 7

in such a way that the total rate of the rate matrix R is equal to

one;

{
X

m

fmRmm~1 ð8Þ

Therefore, only the relative values among Mmn are meaningful.

The frequency-dependent term fn=f mut
n represents the effects of

selection pressures at the DNA level as well as at the amino acid

level, which preserve the codon frequency, fn, specific to a species

and a protein, from the mutational frequency, f mut
n . By taking the

frequencies of stop codons to be zero, the rates from any codon to

the termination codons are set to zero. The quantity ewmn is the

same as the one that Miyata et al. [32] called the rate of

acceptance. We assume that selection pressure against codon

replacements principally appears on an amino acid sequence

encoded by a nucleotide sequence; wmn for the codon pair (m,n) is

equal to the selective constraint wab for the encoded amino acid

pair (a,b).

ewmn:

P
a

P
b[famino acidsg CmaCnbewab

for m,n 6[ fstop codonsg and m=n

0 for m or n[fstop codonsg and m=n

8><
>: ð9Þ

where Cma is a genetic code table and takes the value one if codon

m encodes amino acid a, otherwise zero. At the amino acid level,

there should be no selection pressure against synonymous

mutations. Thus, the wab satisfies

wab~wba , waa~0 ð10Þ

The matrix w will be directly estimated by maximizing the

likelihood of an empirical substitution matrix, or it will be

evaluated for a specific protein family as a linear function of such

an estimate of wab;

wab:bwestimate
ab zw0(1{dab) ð11Þ

In Eq. 11, dab is the Kronecker’s d, and westimate
ab means the

estimate of wab, which is either a physico-chemical estimate or a

ML estimate calculated from a specific substitution matrix, and

satisfies Eq. 10. The parameter b, which is non-negative, adjusts

the strength of selective constraints for a protein family. The

parameter w0 controls the ratio of nonsynonymous to synonymous

substitution rate, but it will be ineffective and may be assumed to

be equal to 0 if amino acid sequences rather than codon sequences

are analyzed.

Then, the substitution probability matrix S(t) at time t in a

time-homogeneous Markov process can be calculated as

S(t)~exp(Rt) ð12Þ

Because the rate matrix R satisfies the detailed balance condition,

the S(t) also satisfies it. Therefore, a substitution process is

modeled as a reversible Markov process. The S(t) and the R that

satisfy the detailed balance condition can be easily diagonalized

with real eigenvalues and eigenvectors [17]; the eigenvalues of R
are the same as those of a symmetric matrix whose (m,n) element is

equal to (fm=fn)1=2Rmn.

If multiple nucleotide changes were completely ignored, then

Eq. 1 would be simplified as Mmn~((1{dm1n1
)(B1)m1n1

dm2n2
dm3n3

)
z (dm1n1

(1{dm2n2
) (B2) m2n2

dm3n3
)z (dm1n1

dm2n2
(1{dm3n3

) (B3)m3n3
),

whose formulation for a codon mutation rate matrix with Eq. 2 is

essentially the same as the one proposed by Muse and Gault [19].

Here, it should be noted that (Bi)mini
in Eq. 2 is defined to be

proportional to the equilibrium nucleotide composition f mut
i,ni

.

Alternatively, one may define Mmn as Mmn~P3
i~1½dmini

z

(1{dmini
)(mi)mini

�f mut
n in the same way as Miyazawa and Jernigan

[17] and others [7,18] defined it to be proportional explicitly to the

composition of the base triplet, f mut
n . This alternative definition

with Eqs. 7 and 8 is equivalent to Eqs. 1 and 2 with f mut
ni

~0:25,

and thus it is a special case in the present formulation; see [36] for

justifications of this alternative definition.

In the present analyses, we assume for simplicity that (mi)mini

and f mut
i,ni

do not depend on codon position i; that is, (mi)jg~mjg

and f mut
i,j ~f mut

j , where j,g[fa,t,c,gg. This assumption is reason-
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able because mutational tendencies may not depend on a

nucleotide position in a codon. Let us define m½tc�½ag� to represent

the average of the exchangeabilities of the transversion type, mta,

mtg, mca, and mcg, and likewise mtcjag to represent the average of

the exchangeabilities of the transition type, mtc and mag. We use

the ratios fmjg=m½tc�½ag�g as parameters for exchangeabilities, and

m½tc�½ag� to represent the ratio of the exchangeability of double

nucleotide change to that of single nucleotide change and also the

ratio of the exchangeability of triple nucleotide change to that of

double nucleotide change; note that the exchangeabilities of single,

double, and triple nucleotide changes are of O(m½tc�½ag�),
O(m2

½tc�½ag�), and O(m3
½tc�½ag�) in Eq. 1, respectively, and that Eq. 8

must be satisfied. Then, multiple nucleotide changes in a codon

can be completely neglected by making the parameter m½tc�½ag�
approach zero with keeping fmjg=m½tc�½ag�g constant in Eq. 8. Also,

it is noted that double nucleotide changes at the first and the third

positions in a codon are assumed to occur as frequently as doublet

changes.

Empirical substitution matrices used for model fitting
Maximum likelihood (ML) values are calculated for each 1-

PAM substitution frequency matrix, which corresponds to the time

duration of 1 amino acid substitution per 100 amino acids, of the

JTT [5], the WAG [10], the LG [11], the cpREV [8], and the

mtREV [6] amino acid substitution matrices, and of the KHG

codon substitution matrix [14]. We have arbitrarily chosen the

transition matrices of 1-PAM, whose time interval is long enough

for the significant number of substitutions to occur and also too

short for multi-step substitutions to cover multiple nucleotide

changes. JTT is an accepted point mutation matrix compiled from

the pairs of closely related proteins encoded in nuclear DNA.

WAG, LG, cpREV, and mtREV are amino acid substitution

matrices estimated by maximizing the likelihood of a given set of

optimum phylogenetic trees. The KHG matrix used is the one

named ECMunrest in the supplement of their paper, for which

multiple nucleotide changes are allowed. JTT, WAG, LG, and

KHG were all calculated from nuclear-encoded proteins, although

JTT was calculated by a different method from the others. The

matrices of cpREV and mtREV were calculated from proteins

encoded in chloroplast DNA, and in vertebrate mitochondrial

DNA, respectively. It should be noted here that a non-universal

genetic code is used in the mitochondrial DNA.

Average of a transition matrix over time or over rate
In the present study, model parameters are estimated by

maximizing the likelihood of each 1-PAM substitution frequency

matrix of JTT, WAG, LG, cpREV, mtREV, and KHG. In the

case of JTT, the pairs of closely related sequences were used to

count substitutions and the transition matrix was calculated by

completely neglecting multiple substitutions at a site in a

parsimony method. Thus, JTT should be considered to consist

of substitutions that occurred in various time intervals (various

branch lengths). The substitution rate matrices of WAG, LG,

mtREV, cpREV and KHG were estimated by the ML method for

a given set of protein phylogenetic trees. Each site of protein

families may have evolved with a different rate. As a result, these

substitution matrices may be regarded as an average over different

substitution rates. Here we assume that evolutionary time intervals

or substitution rates for each substitution matrix are distributed in

a C distribution. There have been many attempts [25,26] of using

a C distribution for rate variation.

If the substitution rate matrix R is assumed to vary only by a

scalar factor, the mean of a substitution matrix irrespective of over-

time and over-rate will be calculated as

SST(t,s):
ð?

0

S(t)C(t; t,s)dt

~

ð?
0

1

C(t)
expf{(I{sR)

t

s
g( t

s
)

t{1 dt

s
~½(I{sR){1�t ð13Þ

where C(t; t,s) is the probability density function of a C distribution

with a scale parameter s and a shape parameter t, C(t) is the C
function, and I is the identity matrix. The mean and the variance of the

C distribution C(t; t,s) are equal to ts and ts2, respectively. Here we

should recall that the rate matrix R is normalized such that the total

rate per unit time is equal to one; see Eq. 8.

Evaluation of the log-likelihood of an empirical
substitution matrix

The log-likelihood of the empirical frequency, Akl~Nf obs
k Sobs

kl ,

of substitutions from k to l in the present model can be calculated as

‘(h)~N
X

k

X
l

f obs
k Sobs

kl log(fkSST(t,s)kl) ð14Þ

where k and l mean one of the amino acid types for amino acid

substitution matrices or one of the codon types for codon

substitution matrices, Sobs is an observed transition probability

matrix corresponding to the accepted point mutation matrix A,

f obs
k is the observed composition of amino acid or codon k, and N

is the total number of amino acid or codon sites compared to

count substitutions. The observed composition f obs
k is assumed to

be the equilibrium composition of Sobs. h is a set of parameters

and ĥh~arg maxh ‘(h) is a set of the maximum likelihood (ML)

estimators. Similarly, the estimate ÎI KL of the Kullback-Leibler (K-

L) information by replacing the real distribution to the observed

frequency distribution is calculated as

ÎIKL(h)

~
X

k

X
l

f obs
k Sobs

kl ½log(f obs
k Sobs

kl ){log(fkSST(t,s)kl)� ð15Þ

~{‘(h)=Nz
X

k

X
l

f obs
k Sobs

kl log(f obs
k Sobs

kl ) ð16Þ

Maximum log-likelihood ‘(ĥh) corresponds to the minimum of the

estimate of K-L information, ÎIKL(ĥh).

The transition probability, S(t)ab, between amino acids a and b
and the composition, fa, of amino acid a are related to those for

codons as follows.

faS(t)ab:
X

m

X
n

CmafmS(t)mnCnb ð17Þ

fa:
X

m

Cmafm ð18Þ

The goodness of a model and the significance of parameters can

be indicated by Akaike Information Criterion (AIC). The AIC

Selective Constraints on Amino Acids

PLoS ONE | www.plosone.org 4 March 2011 | Volume 6 | Issue 3 | e17244



value is defined as

AIC

:{2‘(ĥh)z2:(number of adjustable parameters) ð19Þ

DAIC

:AICz2N
X

k

X
l

f obs
k Sobs

kl log(f obs
k Sobs

kl ) ð20Þ

~2NÎIKL(ĥh)z2:(number of adjustable parameters) ð21Þ

For convenience, DAIC, which is equal to a constant value added

to the AIC value, is also defined above. The AIC and DAIC
always take a non-negative value. Models with smaller AIC and

DAIC can be considered to be more appropriate [37].

Parameters in the present model are b, mjg, f mut
g , fg, t, and s.

Assuming that the observed process of substitutions is in the

stationary state, the estimates of the equilibrium codon and the

equilibrium amino acid compositions, f̂fm and f̂fa, are taken to be

the observed composition of the codon and of the amino

acid:

f̂fm~f obs
m , f̂fa~f obs

a ð22Þ

In the case of amino acid sequences, for which their coding

sequences are not available, codon compositions may be

parameterized by

f̂fm~

P
a Cmaf̂f af usage

mP
a Cma

P
n Cnaf

usage
n

ð23Þ

f
usage

n~(n1,n2,n3)~f usage
n1

f usage
n2

f usage
n3

ð24Þ

In the present analyses, this parameterization is used for the

equilibrium codon compositions in amino acid sequences.

Then, the shape parameter t of a C distribution for variations in

mutation rates or evolutionary time intervals for observed codon

or amino acid substitutions is estimated by equating the ratio of the

expected number of substitutions in the model to its observed

value.

X
k

f̂fkSST(t̂t,s)kk~
X

k

f obs
k Sobs

kk ð25Þ

Other parameters b, mjg, f mut
g , f usage

g , and s are evaluated as ML

estimators or fixed to a proper value. The observed transition

matrix Sobs
kl corresponding to 1-PAM is used here; PAM means

accepted point mutations per 100 amino acids.

X
a

f obs
a Sobs

aa ~0:99 ð26Þ

The total number of site comparisons (N) for each
empirical substitution matrix

In the case of JTT, 59190 accepted point mutations found in

16130 protein sequences were used to build a substitution

probability matrix of 1-PAM [5]. Thus, the total number N of

amino acid comparisons for JTT is assumed to be equal to

N~59190=0:01. On the other hand, a phylogenetic tree for

cpREV is based on 9957 amino acid sites of 45 proteins encoded in

chloroplast DNAs of 9 species [8], and the one for mtREV is based

on 3357 amino acid sites of the complete mitochondrial DNA from

20 vertebrate species (3 individuals from human) [6]. Thus, the total

number of site comparisons N for them may be approximated to be

equal to the number of amino acid sites multiplied by the number of

branches in the phylogenetic tree used to evaluate the transition

matrices; that is, N&9957:(2:10{3)~169269 for cpREV, and

N&3357:(2:22{3)~137637 for mtREV. The BRKALN data-

base consisting of 50867 sites and 895132 residues was used to

estimate WAG. Thus, N&895132:2{50867:3~1637663 is used

for WAG [10,11]. To evaluate LG, 3412 of 3912 alignments

consisting of 49637 sequences, 599692 sites, and 6697813 residues are

used [11]. Therefore, N&(6697813:2{599692:3):3412=3912~
10114373 is assumed for LG. These crude estimates of N are used

to evaluate the AICs of JTT, WAG, LG, cpREV and mtREV.

In the case of KHG, which was estimated by maximizing a

likelihood of a set of phylogenetic trees of coding sequences of

7332 nuclear protein families taken from Pandit database [38], the

total numbers of residues and sites are not written in Kosiol et al.

[14], so that an AIC value is not given for KHG in the following.

Results

Models, each of which includes a different number of

parameters and is a special case of models including more

parameters, are fitted by a maximum likelihood method to each of

the 1-PAM amino acid substitution frequency matrices, JTT [5],

WAG [10], and LG [11] for proteins encoded in nuclear DNA,

cpREV [8] for chloroplast DNA, and mtREV [6] for mitochon-

drial DNA. Also, the models are fitted to the 1-PAM codon

substitution frequency matrix of KHG [14] for nuclear DNA. The

selective constraints wab are either directly estimated by ML or

evaluated from a known estimate westimate
ab by Eq. 11 that includes

two parameters b and w0. The parameter w0 is fixed here to 0 for

amino acid substitution matrices because the likelihood of an

amino acid substitution matrix does not strongly depend on w0;

codon substitution data are required to reliably estimate the value

of w0, which significantly affects the ratio of nonsynonymous to

synonymous substitution rate. Each model is named to indicate

either the method to estimate wab or the name of westimate
ab with a

suffix meaning the number of ML parameters. Each model is

briefly described in Table 1. The Nelder-Mead Simplex algorithm

has been used for the maximization of likelihoods.

The effects of selective constraints
First, the No-Constraints models, in which selective constraints

do not depend on amino acid pairs, b~0 in Eq. 11, were examined

to see how well nucleotide mutation rates, codon frequencies and a

genetic code can explain the observed frequencies of amino acid

substitutions in JTT, WAG, cpREV, and mtREV; the No-

Constraints models disallowing multiple nucleotide changes are

equivalent to mononucleotide substitution models, because w0~0 is
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used here. The DAIC value and the ML estimates for each

parameter set are listed in Table 2 and Table S1, respectively.

Please refer to Text S1 for details. These No-Constraints models

serve as a reference to measure how selection models can improve

the likelihoods. Then, we examine various estimations of selective

constraints on amino acids based on the physico-chemical distances

of amino acids evaluated by Grantham [31] and by Miyata et al.

[32] and mean energy increments due to an amino acid substitution.

These models are called Grantham, Miyata, and Energy-Incre-

ment-based (EI) models, respectively. Please refer to Text S1 for the

definition of the mean energy increment and for the details of each

model. The DAIC values and the ML estimates for these models

with various sets of parameters are also listed in Table 2, and Tables

S2 and S3, respectively. Comparisons of DAIC values between the

models in Table 2 indicate that the selective constraints on amino

acids representing conservative selection against amino acid

substitutions significantly improve the DAIC values of all

substitution matrices. It is also indicated that the Miyata’s

physico-chemical distance performs better in all parameter sets

than the Grantham’s distance, This result is consistent with that of

Yang et al. [7] for mitochondrial proteins. The present physico-

chemical evaluation of selective constraints (EI models) fits JTT and

WAG even better than the Miyata’s distance scale, although the

performances of both the methods are almost same for cpREV and

mtREV. One of the important facts in these results is that allowing

multiple nucleotide changes in a codon significantly improve the

AIC irrespective of the estimations of selective constraints; compare

the DAIC values between the Grantham-10 and the Grantham-11,

between the Miyata-10 and the Miyata-11, and between the EI-10

and the EI-11.

The effects of multiple nucleotide changes on ML
estimations

In principle, all parameters fwabg for selective constraints can

be optimized in the case of codon sequences. In the case of protein

sequences, all 190 non-diagonal elements of w in addition to the

parameters for mutational tendencies at the nucleotide level and

others cannot simultaneously be optimized; the number of

freedoms in a general reversible model for an amino acid

transition matrix is equal to 209.

In order to see how well amino acid substitution matrices can be

explained with the assumption of successive single nucleotide

substitutions, let us optimize wab corresponding to single-step

amino acid pairs by assuming that only single nucleotide mutations

are possible, i.e., by m½tc�½ag�?0 with mjg=m½tc�½ag�~constant in

Eq. 8. The number of wab for the single-step amino acid pairs is

equal to 75 in the case of the universal genetic code. All 75 wab for

the single-step amino acid pairs have been optimized for each of

JTT and WAG together with the nucleotide exchangeabilities

fmjgg, the equilibrium nucleotide composition ff mut
j g, the codon

usage parameters ff usage
j g and the scale parameter s; the total

number of the parameters is equal to 87 in addition to the 19

amino acid frequencies and the shape parameter t. This

maximum likelihood model to estimate the matrix w is called

ML with a suffix meaning the number of ML parameters; see

Table 1. The ML estimates of these parameters except ŵwab for the

ML-87 are listed in Table 3 for JTT and WAG.

In the lowest rows of this table, the ratio of the total nucleotide

substitution rate per codon to the codon substitution rate, which

represents the average number of nucleotide changes for substitut-

ing a codon, the ratio of the total transition to the total transversion

rate per codon, and the ratio of nonsynonymous to synonymous

substitution rate per codon are listed for the models. The sum of the

total transition and the total transversion rates per codon is equal to

Table 1. Brief description of models.

Model name Description

No-Constraints-n No amino acid dependences of
selective constraints; b~0. The suffix n

means the number of ML parameters.

EI-n ŵwestimate
ab :Dêec

abzDêev
ab based on the

Energy-Increment-based (EI) method,
which is described in Text S1, is used to
estimate wab in Eq. 11. The suffix n

means the number of ML parameters.

Miyata-n The amino acid pair distance dab

estimated by Miyata et al. [32] is used

as westimate
ab ~{dab to estimate wab in

Eq. 11. The suffix n means the number
of ML parameters.

Grantham-n The amino acid distance dab estimated
by Grantham [31] is used as

westimate
ab ~{dab to estimate wab in Eq.

11. The suffix n means the number of
ML parameters.

ML-n Selective constraints fwabg are
estimated by maximizing the likelihood
of JTT [5], WAG [10], or LG [11], and

called fwJTT=WAG=LG{MLn
ab g. The suffix n

means the number of ML parameters.
In the ML-87, multiple nucleotide
changes are disallowed, and fwabg for
all 75 single-step amino acid pairs are
estimated. In the ML-91 and the ML-94,
multiple nucleotide changes are
allowed, and fwabg for all 75 single-step
amino acid pairs and for 6 groups of
multiple-step amino acid pairs are
estimated. In the ML-91, equal codon
usage is assumed. In the ML-200 for
codon substitution matrices, fwabg for
all 190 amino acid pairs are estimated.

ML-nz First, the ML-n is used to estimate
parameters, and then fwabg for all
multiple-step amino acid pairs are
estimated by maximizing the likelihood
with fixing all other parameters to the
values estimated by the ML-n.

JTT-ML91-n,
WAG-ML91-n, LG-ML91-n

Selective constraints

fwJTT=WAG=LG-ML91
ab g estimated by

maximizing the likelihood of JTT/WAG/
LG [5,10,11] in the ML-91 model are

used as fwestimate
ab g in Eq. 11. The suffix n

means the number of ML parameters.

JTT-ML91+2n, WAG-ML91+2n,
LG-ML91+2n

Selective constraints

fwJTT=WAG=LG-ML91z

ab g estimated by

maximizing the likelihood of JTT/WAG/
LG [5,10,11] in the ML-91+ model are

used as fwestimate
ab g in Eq. 11. The suffix n

means the number of ML parameters.
The JTT/WAG/LG-ML91+20 models
correspond to the JTT/WAG/LG-F
models, respectively.

KHG-ML200-n Selective constraints fwKHG-ML200
ab g

estimated by maximizing the likelihood
of the KHG codon substitution matrix
[14] in the ML-200 model are used as

fwestimate
ab g in Eq. 11. The suffix n means

the number of ML parameters. The
KHG-ML200-0 models correspond to
the KHG-F model.

doi:10.1371/journal.pone.0017244.t001
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the total nucleotide substitution rate per codon. The lowest three

rows list their values in the case of s?0 and wab~0, and the second

lowest three rows for the case of s?0. Thus, the differences of their

values between the lowest and second lowest three rows represent

the effects of selective constraints on amino acids (wab), and those

between the second lowest and the third lowest three rows describe

the effects of rate/time variations on the substitution matrix. If

codon substitutions proceed by successive single nucleotide changes,

i.e., m½tc�½ag�?0, then the ratio of the total nucleotide to the codon

substitution rate will be equal to 1 in the case of s?0.

Here it should be noticed that the nonsynonymous and the

synonymous substitution rates are defined not to be rate per site

but simply rate per codon. The sum of the nonsynonymous and

the synonymous substitution rates is equal to the codon

substitution rate. The ratio of the nonsynonymous to the

synonymous substitution rate per codon does not corresponds to

the ratio of nonsynonymous to synonymous substitutions per site,

KA=KS [39], but the ratio of nonsynonymous to synonymous

substitutions per codon, MA=MS [39]. The ratio (NA=NS [39]) of

the effective number of nonsynonymous sites to that of

Table 2. D AICvalues of the present models without and with the selective constraints on amino acids, which are based on mean
energy increments due to an amino acid substitution (EI), the Miyata’s and the Grantham’s physico-chemical distances, for the 1-
PAM amino acid substitution matrices of JTT, WAG, cpREV, and mtREV.

DAICa

Model #parameters JTT WAG cpREV mtREV

(id no.b)

No-Constraints-

1 21(b~0, 3) 86428.1 37917.6 3478.0 2644.1

10 30(b~0, 2–10,14) 24595.6 7719.1 904.5 901.0

13 33(b~0, 2–14) 22913.6 7141.5 874.9 798.8

EI-

2 22(1,3) 77337.9 35058.8 3186.0 2396.6

2G 22(1,14) 24197.7 5571.6 974.0 1066.8

3 23(1,3,14) 16463.7 4995.0 761.5 776.4

4 24(1–3,14) 15808.7 4443.6 743.0 753.9

8 28(1–7,14) 15715.0 4327.8 722.0 728.2

7 27(1–3,8–10,14) 15081.0 4312.6 650.7 688.7

10 30(1,3–10,14) 15435.7 4801.8 670.7 702.8

10M 30(1–10) 15270.7 4250.4 645.3 674.3

11 31(1–10,14) 14999.0 4202.5 636.0 674.3

10MU 30(1–3,8–14) 13464.3 3959.7 578.9 662.4

12 32(1,3–13) 72316.3 33908.4 2939.7 2215.0

13 33(1,3–14) 13819.7 4554.2 623.6 655.5

13M 33(1–13) 13436.2 3822.4 551.1 623.3

14 34(1–14) 13151.9 3748.0 541.9 614.8

Miyata-

4 24(1–3,14) 16090.1 4938.1 750.3 783.0

7 27(1–3,8–10,14) 15767.2 4715.4 654.5 701.6

10 30(1,3–10,14) 16446.1 5124.9 679.2 708.5

11 31(1–10,14) 15536.8 4429.5 628.4 658.4

13 33(1,3–14) 15058.2 4943.1 656.5 682.3

14 34(1–14) 14338.5 4254.0 603.7 613.6

Grantham-

4 24(1–3,14) 20505.1 5953.7 916.4 887.1

7 27(1–3,8–10,14) 18898.2 5814.0 840.6 832.9

10 30(1,3–10,14) 18744.5 5749.0 805.4 799.8

11 31(1–10,14) 18680.9 5579.7 803.2 796.5

13 33(1,3–14) 16784.9 5512.9 765.0 741.0

14 34(1–14) 16729.7 5477.1 755.0 739.5

aDAIC:2NÎIKL(ĥh)z2| #parameters with N^5919000 for JTT, N&1637663 for WAG, N&169269 for cpREV, and N&137637 for mtREV; see text for details.
bML parameters in each model are specified by the parameter id numbers in the parenthesis, and other parameters are fixed at id0~0, id1~?, id2?0, id3{7~1:0,
id8{13~0:5, and id14?0. Each id number corresponds to the parameter id number listed in Table 3.
doi:10.1371/journal.pone.0017244.t002
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Table 3. ML estimates and DAIC values of the present models for the 1-PAM amino acid substitution matrices of JTT, WAG, and LG,
and the 1-PAM codon substitution matrix of KHG.

JTT WAG LG KHG

(codon)

id parameter ML–87a ML–91a ML–94 ML–87a ML–91a ML–94 ML–91a ML–94 ML–200

no.

0 {ŵw0 N/A N/A N/A N/A N/A N/A N/A N/A N/A

1 1=b̂b N/A N/A N/A N/A N/A N/A N/A N/A N/A

2 m̂m½tc�½ag� (?0) 0.637 0.662 (?0) 1.28 1.29 1.08 1.19 0.939

3 m̂mtcjag=m̂m½tc�½ag� 0.0919 1.57 1.59 0.746 1.70 1.69 1.85 1.81 0.843

4 m̂mag=m̂mtcjag 1.77 1.14 1.15 1.98 1.32 1.31 1.23 1.21 0.945

5 m̂mta=m̂m½tc�½ag� 0.0293 0.729 0.730 0.0477 0.791 0.784 0.676 0.682 1.52

6 m̂mtg=m̂m½tc�½ag� 3.21 0.940 0.950 3.64 1.04 1.01 1.07 1.07 0.554

7 m̂mca=m̂m½tc�½ag� 0.719 1.19 1.18 0.110 1.23 1.23 1.28 1.25 0.573

8 f̂f mut
tza

0.408 0.459 0.446 0.372 0.367 0.392 0.388 0.403 0.497

9 f̂f mut
t =f̂f mut

tza
0.113 0.501 0.522 0.234 0.587 0.513 0.450 0.439 0.513

10 f̂f mut
c =f̂f mut

czg
0.698 0.429 0.436 0.425 0.479 0.471 0.427 0.383 0.470

11 f̂f
usage

tza
0.0682 (0.5) 0.483 0.0669 (0.5) 0.221 (0.5) 0.447 NA

12 f̂f
usage

t =f̂f
usage

tza
0.461 (0.5) 0.491 0.330 (0.5) 0.429 (0.5) 0.555 NA

13 f̂f usage
c =f̂f

usage
czg

0.386 (0.5) 0.558 0.310 (0.5) 0.306 (0.5) 0.249 NA

14 ŝs 27.3 0.738 0.740 43.3 0.905 0.840 0.415 0.395 ?0

t̂tŝs 0.334 0.0243 0.0246 0.317 0.0223 0.0207 0.0246 0.0240 0.0240

#parameters 107 111 114 107 111 114 111 114 261

ÎIKL(ĥh)|108b 15695 638 613 35319 1903 1438 2771 2335 269946

DAICc 2072.0 297.5 300.6 1370.8 284.3 275.1 782.5 700.4 unknown

Ratio of substitution rates

per codon

the total base/codon 1.28 1.35 1.35 1.38 1.53 1.52 1.38 1.39 1.29

(1.29)d

transition/transversion 0.464 1.08 1.08 0.482 0.932 0.806 1.18 1.20 0.764

(0.765)d

nonsynonymous/synonymouse 1.13 1.37 1.34 1.57 2.07 2.40 1.05 1.20 0.726

(0.723)d

Ratio of substitution rates

per codon for s?0

total base/codon 1.0 1.22 1.22 1.0 1.38 1.40 1.31 1.33 1.29

transition/transversion 0.101 1.21 1.22 0.647 1.11 0.932 1.31 1.35 0.764

nonsynonymous/synonymouse 0.0644 1.04 1.02 0.138 1.50 1.79 0.853 0.889 0.726

Ratio of substitution rates per

codon for wab~0 and s?0

total base/codon 1.0 1.45 1.46 1.0 1.72 1.74 1.67 1.71 1.51

transition/transversion 0.0605 0.829 0.831 0.499 0.933 0.849 0.992 0.981 0.427

nonsynonymous/synonymouse 11.3 5.58 5.74 11.1 8.68 11.1 7.45 8.46 6.81

aIf the value of a parameter is parenthesized, the parameter is not variable but fixed to the value specified.
bÎIKL(ĥh)~{(‘(ĥh)=Nz2:98607330) for JTT, {(‘(ĥh)=Nz2:97444860) for WAG, {(‘(ĥh)=Nz2:96853414) for LG, and {(‘(ĥh)=Nz4:19073314) for KHG; see text for details.
cDAIC:2NÎIKL(ĥh)z2| #parameters with N^5919000 for JTT, N&1637663 for WAG, N&10114373 for LG, and the value of N is unknown for KHG; see text for
details.
dThe value in the parenthesis corresponds to the one for the KHG codon substitution probability matrix.
eNote that these ratios are not the ratios of the rates per site but per codon; see text for details.
doi:10.1371/journal.pone.0017244.t003
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synonymous sites per codon corresponds to the ratio of

nonsynonymous to synonymous rate in the case of no selective

constraints (wab~0). In the present models, KA=KS indicating the

effects of selection on amino acid replacements corresponds to the

nonsynonymous to synonymous substitution rate ratio in the case

of s?0 divided by that in the case of wab~0 and s?0. Table 3

indicates that selection on amino acids is conservative, because the

ratio of nonsynonymous to synonymous rate per codon is much

smaller in the case of s?0 than in the case of wab~0 and s?0.

As expected, the AIC value drastically decreases from that of the

EI-14 in both cases of JTT and WAG, indicating that the

introduction of many parameters may be still appropriate.

However, there are large discrepancies between the observed

transition matrix and the one estimated by the ML-87. Let us see

the discrepancies between them in terms of log-odds.

A log-odds matrix introduced by Dayhoff et al. [4] is one of the

representations of amino acid substitution propensities. The (k,l)
element of the log-odds matrix is defined to be the logarithm of

odds to find an amino acid pair (k,l) in comparison with random

sequences. The odds Okl is equal to the (k,l) element of transition

matrix divided by the amino acid composition fl.

O(S(t))kl:S(t)kl=fl ð27Þ

log{O(S(t))kl:
10

log10
logO(S(t))kl ð28Þ

The proportional constant in Eq. 28 is the one originally used by

Dayhoff et al. [4].

In Fig. 1, the log-odds log{O(SST(t))ab corresponding to the 1

PAM transition matrix of the ML-87 model fitted to JTT are

plotted against those calculated from JTT. Plus, circle and cross

marks show the log-odds for one-, two-, and three-step amino acid

pairs, respectively. Although the estimated values of log-odds for

one-step amino acid pairs are almost exactly equal to those of the

JTT matrix, there are still large discrepancies between the log-

odds values for two- and three-step amino acid pairs, indicating a

non-stepwise manner of codon substitutions. Similar discrepancies

are also found in Fig. S1 for WAG.

We have examined how the AIC is improved by enabling

multiple nucleotide changes in a codon. The selective constraints

fwabg for multiple nucleotide changes are classified into 6 groups

according to the amounts of discrepancies between the observed

and the estimated values of the log-odds as shown in Fig. 1. Then,

the ML estimates of 94 parameters including 7 additional

parameters, wab for the 6 groups of multiple nucleotide changes

and the parameter m½tc�½ag� for the rate of multiple nucleotide

change, are calculated. This model is called ML-94. Also, the

values of fwabg for multi-step amino acid pairs are calculated by

maximizing the likelihood with fixing the values of all other

parameters including wab for the single-step amino acid pairs; this

model is called here ML-94+ by appending the "+" mark. It should

be noted that these values of ŵwab for the multi-step amino acid

pairs in the ML-94+ are not ML estimates at all. The ML

estimates ŵwab for single-step amino acid pairs, the classification of

multi-step amino acid pairs into the 6 groups, and the ML

estimates for those categories of wab are provided in Data S1. As

shown in Table 3, the ML estimates of mjg, f mut
j , and f usage

g for the

ML-87 model are very different from those for the ML-94, and

some of them for the ML-87 seem to be unrealistic. For example,

m̂mta=m̂m½tc�½ag� is evaluated to be smaller than 0:1. Also, the small

value of f̂f
usage

tza indicates the extremely biased usage of codons. The

ML estimate ŝs of a C distribution is too large. These parameters

are forced in the ML-87 to take such values to reduce the

discrepancies between the observed and the estimated counts for

multi-step amino acid pairs. In the ML-94 model, the ML

estimators of these parameters take more reasonable values.

However, it may also yield unreasonable estimates for codon usage

parameters, ff usage
j g; for example, f̂f

usage
tza ~0:221 in the ML-94 for

WAG, and f̂f usage
c ~0:249:f̂f usage

czg ~0:14 in the ML-94 for LG.

Thus, the ML-91 model with f
usage
j ~0:25, which means equal

codon usage, may be better than the ML-94. The ML-91 model

was applied for JTT, WAG, and LG, and the ML estimates for

them in the ML-91 are also listed in Table 3.

Figure 1. The ML-87 and the ML-91 models fitted to JTT. Each element log-O(SST(t̂t,ŝs))ab of the log-odds matrices of (A) the ML-87 and (B) the

ML-91 models fitted to the 1-PAM JTT matrix is plotted against the log-odds log-
P
k

f̂fkSST(t̂t,s)kk~
P
k

f obs
k Sobs

kk calculated from JTT. Plus, circle, and

cross marks show the log-odds values for the types of substitutions requiring single, double and triple nucleotide changes, respectively. The dotted

line in each figure shows the line of equal values between the ordinate and the abscissa.
doi:10.1371/journal.pone.0017244.g001

Selective Constraints on Amino Acids

PLoS ONE | www.plosone.org 9 March 2011 | Volume 6 | Issue 3 | e17244



The ML estimators m̂mjg, f̂f mut
j , and ŝs show a similar tendency

between the ML-91 models for all the amino acid substitution

matrices, i.e., JTT, WAG, and LG. The parameter m½tc�½ag� for

multiple nucleotide changes and the scale parameter s for rate

variation are both significant for all the matrices. The values of

m̂mtcjag=m̂m½tc�½ag�w1 for JTT, WAG, and LG indicate that the mean

exchangeability of the transition type is larger than that of the

transversion type in all the matrices.

As shown in Fig. 1 for JTT and in Fig. S1 for WAG, the large

discrepancies of the log-odds for the multi-step amino acid pairs

disappear in the ML-91, in which multiple nucleotide changes are

taken into account. The AIC values of JTT and WAG are

significantly improved by enabling multiple nucleotide changes in

the ML-91. This fact confirms that multiple nucleotide changes

are statistically significant and should be taken into account to

build a codon substitution model.

ML estimation for the KHG codon substitution matrix
If a codon substitution matrix is used for model fitting with the

assumption of multiple nucleotide changes, all 190 parameters of

selective constraints fwabg will be able to be optimized. The ML-

200 model has been fitted to the 1-PAM codon substitution

frequency matrix of KHG, which was empirically estimated

without any restriction on multiple nucleotide changes [14].

The log-odds values for the codon pairs requiring single, double,

and triple nucleotide changes are shown in Figs. 2A, 2B, and 2C,

respectively. In these figures, upper triangle, plus, circle, and cross

marks show the log-odds values for synonymous pairs and one-,

two-, and three-step amino acid pairs, respectively. The dotted line

shows the line of values where the observed and the estimated

values of log-odds are equal to each other. The log-odds of the

codon pairs requiring single/double/triple nucleotide changes for

one/two/three-step amino acid pairs respectively tend to fall along

the dotted line in comparison with the log-odds of the other codon

pairs. In other words, the log-odds of the codon pairs for which

any nucleotide change is accompanied by an amino acid change

are correctly estimated. On the other hand, the estimated log-odds

values do not well agree with the observed ones for synonymous

codon pairs shown by the upper triangles. These estimated log-

odds can be adjusted only by changing nucleotide mutation rates,

i.e., mjg and f mut
j . Thus, the approximations of the independence

and of no difference of nucleotide exchangeabilities between

nucleotide positions may be limited; see Eq. 1.

The codon pairs, whose log-odds values are less than {30 and

which require more nucleotide changes than the least nucleotide

changes required for the corresponding amino acid pair, tend to

be located in the upper region than in the lower region of the

dotted line; see plus marks in Fig. 2B and plus and circle marks in

Fig. 2C. Such a tendency is more clear in Fig. 2C, in which plus

and circle marks corresponding to one- and two-step amino acid

pairs are mostly located far from and almost in parallel to the

dotted line. The estimated values of the log-odds for these one-

and two-step amino acid pairs are greater by 10 – 15 than the

observed values.

In Fig. 2D, the log-exchangeabilities of the codon pairs

requiring triple nucleotide changes in the 1-PAM KHG matrix

are plotted against their log-odds of the 1-PAM KHG matrix. The

log-exchangeability is defined here to be (10=log10)log½RKHG
mn

:t1{

PAM=fn�. The log-exchangeabilities of the codon pairs correspond-

ing to three-step amino acid pairs are all nearly equal to their log-

odds. The smallest log-exchangeabilities of these codon pairs reach

almost {40. However, there are many codon pairs whose log-

exchangeabilities are smaller than {40, and all of them

correspond to one- or two-step amino acid pairs. The log-

exchangeabilities of these codon pairs are significantly smaller than

their log-odds, indicating that almost all substitutions of these

codon pairs were estimated in KHG not to occur by triple

nucleotide changes but rather by successive single or double

nucleotide changes.

In the present model, codon exchangeabilities are approximated

by the product of nucleotide exchangeabilities; see Eq. 1 for the

exact expression. Therefore, all codon exchangeabilities for triple

nucleotide changes are in the same order of magnitude, and

specific codon pairs cannot be significantly less exchangeable.

Thus, the present approximation for codon exchangeabilities may

have a limitation, unless those exchangeabilities of KHG are

underestimated. Estimation of the exchangeabilities for those

codon pairs, which require more nucleotide changes than the least

nucleotide changes required for the corresponding amino acid

pair, may be less reliable than for the others.

The ML estimates m̂mjg, f̂f mut
j and ŝs for KHG are listed in

Table 3. The scale parameter s of the C distribution is estimated

to be 0:0 for KHG, meaning that variations in rates need not be

taken into account for KHG. There is a different tendency in the

fm̂mjgg between KHG and the amino acid substitution matrices.

One remarkable difference between them is that the parameter

mtcjag=m½tc�½ag� for transition-transversion bias is estimated to be

greater than one in the ML-91 for JTT, WAG, and LG but to be

less than one in the ML-200 for KHG. This estimation of

transition to transversion bias for KHG results from a fact that the

ratio of the total transition to the total transversion substitution

rate is actually equal to 0:765 in KHG, although this fact is

contrary to the common understanding of transition-transversion

bias. Because selective constraints on amino acids more favor

transitions than transversions, transition-transversion bias in

nucleotide mutation rates for KHG must be much less than

0:765. Actually the ratio of the total transition to the total

transversion mutation rate is estimated to be 0.427; see Table 3.

Comparison of ML estimates ŵwab among the present
models

In Table 4, the correlation coefficients of ŵwab between the

present models are listed. The lower half of the table lists those for

single-step amino acid pairs, and the upper half lists those for

multi-step amino acid pairs by excluding the amino acid pairs that

belong to the least exchangeable class at least in one of the models.

Each model name of JTT/WAG/LG-ML91+ and KHG-ML200

means the empirical substitution matrix and the method used to

estimate selective constraints, wab. In the following, these ML

estimates of wab will be specified as ŵw
JTT=WAG=LG{ML91z

ab and

ŵwKHG{ML200
ab . In the EI method, selective constraints are

approximated by a linear function of the energy increment due

to an amino acid substitution, Dêec
abzDêev

ab, which is defined by

Eqs. S1-4, S1-5, and S1-6 in Text S1; therefore, ŵwEI
ab:

{(Dêec
abzDêev

ab).

The correlations of the ML estimates fŵwabg between the JTT-

ML91+, the WAG-ML91+, and the LG-ML91+ are very strong

even for the multi-step amino acid pairs. Comparisons of the ML

estimates of selective constraints between various models are

shown in Fig. S2. The fŵwKHG{ML200
ab g estimated from the KHG

codon substitution matrix are less correlated with

fŵwJTT=WAG=LG{ML91z

ab g from the other amino acid substitution

matrices, especially less for the multi-step amino acid pairs. The

ML estimates f{ŵwabg for the multi-step amino acid pairs are

relatively smaller in the KHG-ML200 than in the JTT/WAG/

LG-ML91+ models; see Fig. S2.

The correlations of fŵwabg between the EI and others are not as

good as those between the other estimates, but they are significant

Selective Constraints on Amino Acids
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especially between the EI and the KHG-ML200 even for the

multi-step amino acid pairs. In Fig. 3A, the ML estimates

f{ŵwJTT{ML91z
ab g in the JTT-ML91+ are plotted against the

energy increments f{ŵwEI
abg due to an amino acid substitution; the

least exchangeable category of multi-step amino acid pairs are not

shown in this figure. Similar plots for the WAG-ML91+ and for

the LG-ML91+ are shown in Fig. S3. The ML estimates

f{ŵwKHG{ML200
ab g for all amino acid pairs in the KHG-ML200

are plotted against the energy increments f{ŵwEI
abg in Fig. 3B. No

drastic difference in the correlation between these two quantities is

found among one-, two-, and three-step amino acid pairs. The

correlations of fŵwabg between the EI and the other models are

better for the ML-91 than for the ML-87; the correlation

coefficient between them for the single step amino acid pairs is

equal to 0:19 for the JTT-ML87 but 0:66 for the JTT-ML91 and

0:30 for the WAG-ML87 but 0:68 for the WAG-ML91. The ML

estimates f{ŵwabg for the single step amino acid pairs are

compared between the ML-87 and the ML-91 models in Fig. S4.

In the next section, we will examine whether the differences

among these estimates of wab are significant in representing

selective constraints on amino acids.

Performance of the ML estimates fŵwabg and the
characteristics of nucleotide mutations estimated

The present model for codon substitutions is designed to

separate selective pressures at the amino acid level from

mutational events at the nucleotide level. Both unequal usage of

degenerate codons and different rates of transition and transver-

sion are characteristic of a genetic system specific to each species

and each organelle. On the other hand, the relative strengths of

Figure 2. The ML-200 model fitted to KHG. Each element log-O(SST(t̂t,ŝs))mn of the log-odds matrix corresponding to (A) single, (B) double, and
(C) triple nucleotide changes in the ML-200 model fitted to the 1-PAM KHG codon substitution matrix is plotted against the log-odds log-
O(SKHG(1 PAM))mn calculated from KHG. In (D), codon log-exchangeabilities of the 1-PAM KHG codon substitution matrix corresponding to triple
nucleotide changes are plotted against the log-odds log-O(SKHG(1 PAM))mn calculated from KHG. The log-exchangeability of the 1-PAM KHG is
defined as (10=log10)log½RKHG

mn
:t1{PAM=fn�. Upper triangle, plus, circle, and cross marks show the log-odds values for synonymous pairs and one-,

two-, and three-step amino acid pairs, respectively. Log-exchangeabilities for the codon pairs whose instantaneous rates are estimated to be 0 in KHG
are shown to be about {65 in this figure. The dotted line in each figure shows the line of equal values between the ordinate and the abscissa.
doi:10.1371/journal.pone.0017244.g002
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selective constraints on amino acids would be far less specific to

each species and each protein than each type of amino acid,

although the mean strength of the selective constraints is specific to

each protein family. Thus, we tried to approximate selective

constraints (wab) for empirical substitution matrices including

cpREV and mtREV by a linear function of those (ŵwab) estimated

from each of JTT, WAG, LG, and KHG; ŵw
JTT=WAG=LG{ML91z

ab

and ŵwKHG{ML200
ab are used as westimate

ab in Eq. 11. We call these

models JTT/WAG/LG-ML91+ or KHG-ML200, which mean

the empirical substitution matrix and the model used to estimate

westimate
ab , with a suffix meaning the number of ML parameters; see

Table 1.

In Table 5, the ML values for these models with the various sets

of parameters are listed for all empirical substitution matrices. The

ML estimates in the JTT/WAG/LG-ML91+211 and the KHG-

ML200-11 models are listed in Tables 6, 7, and 8. The JTT-

ML91+20, the WAG-ML91+20 and the LG-ML91+20 models

are the codon-based models corresponding to the JTT-F, the

WAG-F and the LG-F amino-acid-based model, respectively, in

which the JTT, the WAG and the LG rate matrices with an

adjustment for the equilibrium frequencies of amino acids are used

as a substitution rate matrix, because all 11 parameters of mjg,

f mut
j , and s are fixed to the values of their ML estimators in the

ML-91+ for JTT, WAG, and LG; b~1 and w0~0 are assumed,

However, a critical difference is that a genetic code cannot be

taken into account in the JTT/WAG/LG-F but in the JTT/

WAG/LG-ML94+20. This difference between both models can

been clearly seen in the present models applied to mtREV,

because a non-universal genetic code is used in the vertebrate

mitochondrial DNA. The DAIC is improved from 435:6 in the

JTT-F to 426:0 in the JTT-ML91+20. This indicates an

advantage of the present mechanistic model to the empirical

amino acid substitution model.

The AIC values of the JTT/WAG/LG-ML91+20 are better

for all the four matrices (JTT, WAG, cpREV, and mtREV) than

those of the physico-chemical method EI-11; compare Tables 2

and 5. The AIC values of the KHG-200-0 are better for all except

for JTT than those of the EI-11. The AIC values of all the models

are drastically improved for all the matrices by optimizing the 11

parameters; see Table 5. It is noteworthy that all the models of the

JTT-ML91+211, the LG-ML91+211, and the KHG-ML200-11

yield a better AIC value for WAG than the ML-87 model does,

rejecting the null hypothesis of no multiple nucleotide change

again; see Tables 3 and 5. Thus, the ML estimates

ŵwJTT=WAG=LG{ML91z and ŵwKHG{ML200 sufficiently represent

selective constraints on amino acid substitutions.

In addition, Table 5 indicates which parameters are the most

effective for improving AIC. As well as the EI models, the JTT/

WAG/LG-ML91+27, in which the parameters mjg are fixed to

the ML estimates for JTT/WAG/LG with a certain ratio of

transition to transversion exchangeability, can improve the AIC up

Table 4. Correlations of ŵwab between various estimates; the
lower half shows the correlation coefficients of ŵwab for 75
single-step amino acid pairs and the upper half does those of
ŵwab for 86 multi-step amino acid pairs by excluding 29 amino
acid pairs of the least exchangeable category in the JTT-ML91,
the WAG-ML91 or the LG-ML91.

Model EI
JTT-
ML91+

WAG-
ML91+

LG-
ML91+ KHG-ML200

EI 0.45 0.51 0.59 0.55 (0.65)a

JTT-ML91+ 0.66 0.80 0.80 0.51

WAG-ML91+ 0.68 0.87 0.86 0.55

LG-ML91+ 0.71 0.82 0.90 0.58

KHG-ML200 0.71 0.77 0.69 0.74

aThe value in the parenthesis is the correlation coefficient for which the ŵwab for
all multi-step amino acid pairs are taken into account. The correlation
coefficient of ŵwab for all amino acid pairs between the EI and the KHG-ML200 is
equal to 0.60.
doi:10.1371/journal.pone.0017244.t004

Figure 3. Selective constraint for each amino acid pair estimated from JTT and from KHG. The ML estimate, (A) {ŵwJTT{ML91z
ab in the ML-

91+ model fitted to the 1-PAM JTT amino acid substitution matrix and (B) {ŵwKHG{ML200
ab in the ML-200 model fitted to the 1-PAM KHG codon

substitution matrix, for each amino acid pair is plotted against the mean energy increment due to an amino acid substitution, (Dêec
abzDêev

ab) defined by
Eqs. S1-4, S1-5, and S1-6 in Text S1. In (A), the estimates ŵwab for the least exchangeable class of multi-step amino acid pairs are not shown. Plus, circle,
and cross marks show the values for one-, two-, and three-step amino acid pairs, respectively.
doi:10.1371/journal.pone.0017244.g003
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to the similar degree to the AIC values of the JTT/WAG/LG-

ML91+211, respectively. In other words, the parameters ff mut
j g

are very effective to improve the AIC in comparison with the

parameters fmjgg.
The log-odds values of amino acid pairs estimated by the KHG-

ML200-11 are plotted against their empirical values for the 1-

PAM amino acid substitution matrices of JTT, WAG, LG, and

mtREV in Fig. 4. Similar plots are shown in Figs. S5 – S10. The

comparisons of Fig. 1 and Fig. S1 for the ML-87 model with Fig. 4

and Fig. S5 clearly indicate the good qualities of the ML estimators

ŵwKHG{ML200
ab and ŵw

JTT=WAG=LG{ML91z

ab . Relatively large disagree-

ments between empirical and estimated log-odds exist for cpREV

and mtREV in comparison with those for JTT, WAG, LG, and

the KHG-derived amino acid substitution matrix (KHGaa); see

Fig. 4 and Figs. S5 – S7. It is unknown whether the disagreements

shown in these figures represent meaningful features in the amino

acid substitutions in the chloroplast DNA and the mitochondrial

DNA or result from the relatively small size of sequence data used

for cpREV and mtREV. However, the large disagreements in the

region of low log-odds values may be artifacts, because cpREV

and mtREV tend to include relatively large errors in this region,

especially for mtREV; the log-odds values for mtREV whose

values are smaller than about {47:8 are all assumed to be {47:8;

see the original paper [6].

The ML estimates of 1=b listed in Tables 6, 7, and 8 indicate

that the strength of selective constraints on amino acids is strong in

the order of LG, WAG, and JTT. The strength of selective

constraints is also shown by the change of the ratio of

nonsynonymous to synonymous rate per codon between the two

cases without and with selective constraints, i.e., the cases of

Table 5. DAIC values of the present models with the respective selective constraints on amino acids, ŵwJTT{ML91z, ŵwWAG{ML91z,
ŵwLG{ML91z, and ŵwKHG{M200, for the various 1-PAM substitution matrices.

#parameters DAICb ÎIKL(ĥh)||108c

Model name
#parameters
(id no.a) JTT WAG LG cpREV mtREV

KHG
(amino acid) KHG (codon)

JTT-ML91+2

0 20 2657.5 20807.0 461.7 426.0

1 21(14) 2065.1 20382.6 433.9 424.4

4 24(1–3,14) 1773.7 16148.3 439.2 401.9

7 27(1–3,8–10,14) 1257.8 12330.2 303.4 295.5

11 31(1–10,14) 1152.9 12140.0 291.5 286.5 40931

12 32(0–10,14) 473668

WAG-ML91+2

0 20 9095.4 10537.3 316.2 535.1

1 21(14) 8928.9 9196.3 317.1 532.8

4 24(1–3,14) 6274.9 6354.9 281.4 414.0

7 27(1–3,8–10,14) 3658.3 5294.9 261.6 383.6

11 31(1–10,14) 3299.2 4813.3 259.1 365.1 12789

12 32(0–10,14) 496804

LG-ML91+2

0 20 13669.8 1806.0 487.1 593.4

1 21(14) 12176.2 1188.8 421.4 558.0

4 24(1–3,14) 6325.7 811.6 340.6 391.6

7 27(1–3,8–10,14) 3983.0 636.0 267.0 329.8

11 31(1–10,14) 3878.5 574.7 267.1 314.9 5732

12 32(0–10,14) 436557

KHG-ML200-

0 20 15063.5 953.4 12568.9 403.6 593.6

1 21(14) 15078.6 955.4 12570.9 405.6 595.6

4 24(1–3,14) 6398.0 540.7 5683.3 297.4 399.3

7 27(1–3,8–10,14) 4611.5 533.4 3804.2 259.9 358.0

11 31(1–10,14) 4429.9 518.7 3006.1 251.7 334.1

aParameter id numbers in the parenthesis mean ML parameters in each model and other parameters except for b~1 and w0~0 are fixed to the value of the
corresponding parameter listed in the column of the ML-91 or the ML-200 in Table 3; each id number corresponds to the parameter id number listed in Table 3.
bDAIC:2NÎIKL(ĥh)z2| #parameters with N^5919000 for JTT, N&1637663 for WAG, N&10114373 for LG, N&169269 for cpREV, and N&137637 for mtREV; see text
for details.
cÎIKL(ĥh)~ {(‘(ĥh)=Nz2:97009788) for the KHG-derived amino acid substitution probability matrix, and {(‘(ĥh)=Nz4:19073314) for the KHG codon substitution
probability matrix; see text for details.
doi:10.1371/journal.pone.0017244.t005
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wab~0 and s?0, and s?0. As already noted, the ratio of these

values between the two cases represents the strength of selective

constraints. In the KHG-ML200-11, these ratios are equal to

0:293=5:23~0:056, 0:577=5:35~0:11, and 0:499=3:71~0:13 for

LG, WAG, and JTT, respectively, meaning that the selective

constraints of LG are strongest; it should be noted that this order

agrees with the increasing order of 1=b̂b.

Tables 6 and 7 indicate that the selective constraints

ŵwKHG{ML200 estimated from the KHG codon substitution matrix

tend to estimate the contribution of multiple nucleotide changes

(m½tc�½ag�) to be smaller, the ratio of transition to transversion

exchangeability (mtcjag=m½tc�½ag�) to be smaller, mta=m½tc�½ag� to be

larger, and variations in substitution rates (s) to be less than the

ŵwJTT=WAG=LG{ML91z from the amino acid substitution matrices.

Table 8 shows that the same characteristic differences will be

observed if the JTT/WAG/LG-ML91+211 models are fitted to

the codon substitution matrix of KHG instead of its derived amino

acid substitution matrix. Tables 6, 7, and 8 also show that the ratio

of transition to transversion exchangeability (mtcjag=m½tc�½ag�) tends

to be estimated to be smaller in the order of the LG-ML91+, the

WAG-ML91+, the JTT-ML91+, and the KHG-ML200. The

mtcjag=m½tc�½ag� is estimated by the ML-91 or the ML-200 model to

be smaller in the order of LG, WAG, JTT, and KHG; see Table 3.

The present ML estimates fŵwabg for selective constraints on amino

acids seem to reflect the characteristics of respective substitution

matrices to which the models are fitted. It remains to be analyzed

Table 6. ML estimates of the present models with the respective selective constraints for the 1-PAM amino acid substitution
matrices of JTT, WAG, and LG.

JTT WAG LG

WAG- a LG- a KHG- a JTT- a LG- a KHG- a JTT- a WAG- a KHG- a

ML91+211 ML200-11 ML91+211 ML200-11 ML91+211 ML200-11

{ŵw0 (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

1=b̂b 1.08 1.32 1.07 1.04 1.28 1.01 0.830 0.798 0.757

m̂m½tc�½ag� 0.429 0.304 0.257 1.29 0.921 0.648 1.45 1.543 0.577

m̂mtcjag=m̂m½tc�½ag� 2.36 2.42 1.26 1.19 1.71 0.850 1.16 1.82 0.783

m̂mag=m̂mtcjag 1.22 1.16 0.915 1.26 1.27 1.00 1.20 1.26 0.869

m̂mta=m̂m½tc�½ag� 0.649 0.654 1.32 0.814 0.802 1.54 0.668 0.634 1.59

m̂mtg=m̂m½tc�½ag� 1.13 1.01 0.622 0.862 0.947 0.568 0.988 1.20 0.524

m̂mca=m̂m½tc�½ag� 1.18 1.31 0.605 1.27 1.33 0.597 1.24 1.20 0.446

f̂f mut
tza

0.481 0.507 0.578 0.351 0.405 0.512 0.333 0.335 0.534

f̂f mut
t =f̂f mut

tza
0.527 0.488 0.490 0.548 0.527 0.519 0.462 0.518 0.463

f̂f mut
c =f̂f mut

czg
0.429 0.390 0.413 0.461 0.435 0.463 0.455 0.468 0.446

ŝs 1.09 1.28 0.604 0.893 0.751 ?0 0.886 0.718 ?0

t̂tŝs 0.0263 0.0310 0.0363 0.0220 0.0230 0.0275 0.0246 0.0231 0.0444

#parameters 31 31 31 31 31 31 31 31 31

ÎIKL(ĥh)|108b 27346 32239 36897 33306 15653 13945 59707 23488 14554

DAICc 3299.2 3878.5 4429.9 1152.9 574.7 518.7 12140.0 4813.3 3006.1

Ratio of substitution

rates per codon

the total base/codon 1.35 1.32 1.19 1.51 1.45 1.19 1.47 1.49 1.12

transition/transversion 1.23 1.25 1.02 0.815 0.959 0.753 0.902 1.08 0.789

non-/synonymousd 1.49 1.17 0.612 2.07 1.59 0.577 1.56 1.60 0.293

For s?0

the total base/codon 1.19 1.13 1.09 1.37 1.33 1.19 1.34 1.39 1.12

transition/transversion 1.51 1.57 1.06 0.923 1.10 0.753 1.03 1.29 0.789

non-/synonymousd 1.03 0.755 0.449 1.54 1.19 0.577 1.14 1.20 0.293

For wab~0 and s?0

the total base/codon 1.38 1.29 1.18 1.66 1.60 1.38 1.68 1.80 1.34

transition/transversion 1.27 1.28 0.642 0.645 0.926 0.440 0.622 0.989 0.390

non-/synonymousd 4.67 3.99 3.71 8.62 7.02 5.35 8.79 9.49 5.23

aIn all models, equal codon usage (f̂f
usage

t ~f̂f usage
a ~f̂f usage

c ~f̂f usage
g ~0:25) is assumed. If the value of a parameter is parenthesized, the parameter is not variable but fixed

to the value specified.
bÎIKL(ĥh)~ {(‘(ĥh)=Nz2:98607330) for JTT, {(‘(ĥh)=Nz2:97444860) for WAG, and {(‘(ĥh)=Nz2:96853414) for LG.
cDAIC:2NÎIKL(ĥh)z2| #parameters with N^5919000 for JTT, N&1637663 for WAG, and N&10114373 for LG; see text for details.
dNote that these ratios are not the ratios of the rates per site but per codon; see text for details.
doi:10.1371/journal.pone.0017244.t006
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which estimation is better among the JTT/WAG/LG-ML91+ and

the KHG-ML200 and how better it is. Irrespective of which

estimation of the selection constraints is better, the ML estimates

m̂mtcjag=m̂m½tc�½ag� indicate that the transition to transversion bias is

not so strong as previously estimated.

One of the interesting facts is that the ratio of the total transition

to the total transversion rate per codon will be estimated to be

much larger if multiple nucleotide changes are neglected;

m̂mtcjag=m̂m½tc�½ag� (and the ratio of the total transition to the total

transversion rate for s?0) are estimated for the mtREV to be 2.15

(3.32) in the JTT-ML91+210 but 2.01 (2.52) in the JTT-

ML91+211, 4.27 (4.13) in the WAG-ML91+210 but 3.43

(2.73) in the WAG-ML91+211, 4.57 (4.74) in the LG-

ML91+210 but 3.82 (3.31) in the LG-ML91+211, and 1.81

(2.58) in the KHG-ML200-10 but 1.64 (1.96) in the KHG-

ML200-11. The same tendency is observed for JTT, WAG,

cpREV, and mtREV irrespective of the matrices, and for the EI,

the Miyata, and the Grantham models irrespective of the models.

In the case of mtREV, not only the transition-transversion

exchangeability bias (m̂mtcjag=m̂m½tc�½ag�) but also the ratio of the total

transition to the total transversion rate per codon is larger in the

JTT/WAG/LG-ML91+211 than in the JTT/WAG/LG-

ML91+20, and in the KHG-ML200-11 than in the KHG-

ML200-0. Also, the JTT/WAG/LG-ML91+211 and the KHG-

Table 7. ML estimates of the present models with the respective selective constraints for the 1-PAM amino acid substitution
matrices of cpREV and mtREV.

cpREV mtREV

JTT- a WAG- a LG- a KHG- a JTT- a WAG- a LG- a KHG- a

ML91+211 ML200-11 ML91+211 ML200-11

{ŵw0 (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

1=b̂b 0.940 0.977 1.18 1.02 0.690 0.845 0.977 0.752

m̂m½tc�½ag� 0.865 0.917 0.611 0.521 0.564 0.524 0.321 0.228

m̂mtcjag=m̂m½tc�½ag� 1.50 2.23 2.353 1.14 2.01 3.43 3.82 1.64

m̂mag=m̂mtcjag 1.28 1.30 1.24 0.973 1.06 1.13 1.08 0.752

m̂mta=m̂m½tc�½ag� 0.746 0.705 0.733 1.61 0.681 0.595 0.638 2.00

m̂mtg=m̂m½tc�½ag� 1.17 1.37 1.25 0.747 0.792 0.893 0.839 0.411

m̂mca=m̂m½tc�½ag� 1.23 1.17 1.26 0.566 1.65 1.67 1.76 0.623

f̂f mut
tza

0.283 0.306 0.328 0.442 0.262 0.270 0.287 0.426

f̂f mut
t =f̂f mut

tza
0.611 0.654 0.609 0.597 0.601 0.652 0.598 0.631

f̂f mut
c =f̂f mut

czg
0.425 0.446 0.393 0.425 0.349 0.304 0.260 0.332

ŝs 1.93 1.43 1.75 0.158 3.48 2.18 3.37 2.89

t̂tŝs 0.0325 0.0285 0.0339 0.0288 0.0603 0.0445 0.0653 0.0923

#parameters 31 31 31 31 31 31 31 31

ÎIKL(ĥh)|108b 67803 58229 60586 56032 81541 110126 91860 98837

DAICc 291.5 259.1 267.1 251.7 286.5 365.1 314.9 334.1

Ratio of substitution

rates per codon

the total base/codon 1.45 1.46 1.41 1.20 1.36 1.37 1.33 1.23

transition/transversion 1.05 1.20 1.25 1.05 1.44 1.65 1.74 1.45

non-/synonymousd 1.74 1.80 1.38 0.631 0.908 1.04 0.772 0.403

For s?0

the total base/codon 1.21 1.26 1.20 1.16 1.11 1.15 1.09 1.05

transition/transversion 1.42 1.66 1.77 1.07 2.52 2.73 3.31 1.96

non-/synonymousd 1.03 1.10 0.794 0.573 0.387 0.515 0.312 0.163

For wab~0 and s?0

the total base/codon 1.45 1.55 1.44 1.33 1.31 1.37 1.26 1.16

transition/transversion 0.797 1.20 1.25 0.569 1.06 1.78 1.98 0.883

non-/synonymousd 6.06 6.33 5.14 4.97 3.40 3.09 2.58 3.02

aIn all models, equal codon usage (f̂f
usage

t ~f̂f usage
a ~f̂f usage

c ~f̂f usage
g ~0:25) is assumed. If the value of a parameter is parenthesized, the parameter is not variable but fixed

to the value specified.
bÎIKL(ĥh)~ {(‘(ĥh)=Nz2:95801048) for cpREV, and {(‘(ĥh)=Nz2:85313622) for mtREV; see text for details.
cDAIC:2NÎIKL(ĥh)z2| #parameters with N&169269 for cpREV, and N&137637 for mtREV; see text for details.
dNote that these ratios are not the ratios of the rates per site but per codon; see text for details.
doi:10.1371/journal.pone.0017244.t007

Selective Constraints on Amino Acids

PLoS ONE | www.plosone.org 15 March 2011 | Volume 6 | Issue 3 | e17244



ML200-11 models estimate m̂mtcjag=m̂m½tc�½ag� and the ratio of the

total transition to the total transversion rate to be larger for

mtREV than for JTT, WAG, and cpREV. These results are

consistent with a well-known fact that transition to transversion

bias is larger in mitochondrial DNA than in nuclear DNA.

Discussion

Halpern and Bruno [40] considered a codon-substitution model

in which site-specific selection is taken into account in terms of

residue frequencies. If site-specific codon frequencies are explicitly

taken into account in the present model, the substitution rate Rmn

will be regarded as the average of the site-specific rate Ri
mn over

sites i. According to Eq. 7, the site-specific rate is defined as the

product of site-independent mutation rate Mmn and site-dependent

fixation probability, (f i
n=f mut

n )ew�mn .

Ri
mn~ConstMmn

f i
n

f mut
n

ew�mn for m=n ð29Þ

Here the site-dependency of the fixation probability is taken into

account only in terms of codon frequencies. Then, the average of

the site-specific rate over sites is calculated as follows.

Rmn:Const

P
i f i

mRi
mnP

i f i
m

~ConstMmn
fn

f mut
n

ewmn for m=n ð30Þ

Table 8. ML estimates of the present models with the respective selective constraints for the 1-PAM KHG-derived amino acid and
KHG codon substitution matrices.

KHG (amino acid) KHG (codon)

JTT- a WAG- a LG- a JTT- a WAG- a LG- a

ML91+211 ML91+212

{ŵw0 (0.0) (0.0) (0.0) 1.29 1.50 1.11

1=b̂b 0.952 0.912 1.22 1.72 2.02 1.91

m̂m½tc�½ag� 1.545 1.68 1.33 1.23 1.21 1.15

m̂mtcjag=m̂m½tc�½ag� 1.19 1.73 1.69 0.992 1.07 1.09

m̂mag=m̂mtcjag 1.24 1.28 1.22 1.09 1.12 1.10

m̂mta=m̂m½tc�½ag� 0.689 0.682 0.748 1.26 1.25 1.25

m̂mtg=m̂m½tc�½ag� 0.855 1.07 0.943 0.646 0.662 0.671

m̂mca=m̂m½tc�½ag� 1.32 1.26 1.31 0.815 0.806 0.813

f̂f mut
tza

0.317 0.334 0.377 0.480 0.484 0.488

f̂f mut
t =f̂f mut

tza
0.533 0.579 0.512 0.499 0.499 0.493

f̂f mut
c =f̂f mut

czg
0.460 0.480 0.441 0.464 0.459 0.459

ŝs 2.64 2.25 1.30 ?0 0.0496 ?0

t̂tŝs 0.0308 0.0286 0.0247 0.0240 0.0247 0.0240

#parameters 31 31 31 32 32 32

ÎIKL(ĥh)|108b 40931 12789 5732 473668 496804 436557

Ratio of substitution

rates per codon

the total base/codon 1.64 1.66 1.59 1.29 1.29 1.29

transition/transversion 0.772 0.859 0.891 0.759 0.765 0.767

non-/synonymousc 2.56 2.61 2.03 0.728 0.727 0.724

For s?0

the total base/codon 1.39 1.45 1.43 1.29 1.28 1.29

transition/transversion 0.977 1.15 1.08 0.759 0.770 0.767

non-/synonymousc 1.48 1.54 1.36 0.728 0.704 0.724

For wab~0 and s?0

the total base/codon 1.71 1.83 1.75 1.65 1.65 1.64

transition/transversion 0.637 0.926 0.892 0.51 0.552 0.561

non-/synonymousc 9.41 10.3 8.86 8.16 8.07 7.77

aIn all models, codon frequencies are taken to be equal to the observed ones. If the value of a parameter is parenthesized, the parameter is not variable but fixed to the
value specified.
bÎIKL(ĥh)~ {(‘(ĥh)=Nz2:97009788) for the KHG-derived amino acid substitution probability matrix, and {(‘(ĥh)=Nz4:19073314) for the KHG codon substitution
probability matrix; see text for details.
dNote that these ratios are not the ratios of the rates per site but per codon; see text for details.
doi:10.1371/journal.pone.0017244.t008
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ewmn:ew�mn

P
i f i

mf i
n

P
j 1P

i f i
m

P
j f

j
n

ð31Þ

where fn is the average of f i
n over sites. Thus, the wmn defined

here includes the effects of site-specific selection in terms of codon

frequencies.

In the model of Halpern and Bruno [40], the term of ew�mn was

not distinguished from and merged with the mutation rate Mmn;

that is, ew�mn~constant for m=n was assumed, Yang and Nielsen

[22] considered mutation-selection models of codon substitutions

and estimated selective strengths on codon usage. In their models,

selection pressures that deviate codon frequencies from the

equilibrium codon frequencies at the mutational level were

explicitly taken into account, and selective constraints on amino

acids are assumed to be constant over amino acid pairs; that is,

ewab~constant for a=b was assumed. However, the site-specific

selection was not considered; that is, f i
m~fm. In other words, unlike

the present model, selection was taken into account principally in

terms of codon or residue frequencies in both the models. Also.

multiple nucleotide changes were not taken into account. Halpern

and Bruno [40] developed their model for distance calculation. As

pointed out by Yang and Nielsen [22], taking account of site-

specific codon frequencies is not practical for real data analysis due

to the use of too many parameters. Instead, the use of wmn is more

practical. The present results show that the ML values of the JTT/

WAG/cpREV/mtREV amino acid substitution matrices are too

small in the No-Constraints models in which wab~0 is assumed,

and they can be improved by taking account of the term of the

selective constraints ewmn . Also, it is indicated that selective

constraints on amino acids strongly depend on the type of amino

acid.

In some previous models [7,17,18], amino acid substitutions

were assumed to proceed in a stepwise manner by successive single

Figure 4. The KHG-ML200-11 model fitted to each of JTT, WAG, LG, and mtREV. Each element log-O(SST(t̂t,ŝs))ab of the log-odds matrices
of the KHG-ML200-11 model fitted to the 1-PAM matrices of (A) JTT, (B) WAG, (C) LG, and (D) mtREV is plotted against the log-odds log-
O(SLG(1 PAM))ab calculated from the corresponding empirical substitution matrices. Plus, circle, and cross marks show the log-odds values for one-,
two-, and three-step amino acid pairs, respectively. The dotted line in each figure shows the line of equal values between the ordinate and the
abscissa. The log-odds elements of mtREV whose values are smaller than about {47:8 are all assumed to be {47:8; see the original paper [6].
doi:10.1371/journal.pone.0017244.g004
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nucleotide changes in a codon. The empirical amino acid

substitution matrices of JTT, WAG, LG, cpREV, and mtREV,

and the codon substitution matrix KHG all include many

substitutions between amino acid or codon pairs requiring

multiple nucleotide changes. Significance of multiple nucleotide

substitutions was pointed out [7,14,20,27,29]. There are two

possible mechanisms to yield substitutions between such multi-step

amino acid pairs even for a short time interval. One is variations in

substitution rates or time intervals. Another is multiple nucleotide

changes in a codon. Here, the assumption of multiple nucleotide

changes has been directly introduced into a codon-based

substitution model together with the use of a C distribution for

variations in substitution rates and time intervals, and the

effectiveness of the assumption has been examined.

In the models using any physico-chemical evaluation of selective

constraints, the significance of multiple nucleotide changes has

been indicated; see Tables 2 and 3. The ML-87 models fitted to

JTT and WAG, in which the selective constraints fwabg for all

single-step amino acid pairs are optimized by maximizing the

likelihood with the assumptions of no multiple nucleotide change

for codon substitutions and of variations in substitution rates,

reveal that large discrepancies between the observed and the

estimated log-odds values remain for multi-step amino acid pairs;

see Fig. 1. When multiple nucleotide changes are taken into

account in the model ML-91, these discrepancies disappear and

the AIC values significantly decrease, indicating the significance of

multiple nucleotide changes in codon substitutions; see Fig. 1, Fig.

S1, and Table 3.

Evidence for multiple nucleotide changes was found by Averof

et al. [27], and the frequency of multiple nucleotide changes was

evaluated [20]. On the other hand, a possibility for successive

single compensatory substitutions was pointed out by Bazykin et

al. [29]. As pointed out by Kosiol et al. [14], the high

exchangeabilities of the double nucleotide changes, Rcgt < Ragg

and Rcgt < Raga, in KHG may result from successive single

compensatory substitutions. On the other hand, a selection on

synonymous substitutions is necessary for compensatory substitu-

tions to cause the higher exchangeability of Rcga < Ragg than

estimated, because the most probable paths of single nucleotide

changes between Rcga and Ragg are Rcga < Raga < Ragg and

Rcga < Rcgg < Ragg both of which do not accompany any

amino acid change; see Fig. 2. Whatever causes multiple

nucleotide changes, the present scheme for codon substitutions

could be applied to phylogenetic analyses of protein-coding

sequences, because the underlying time scale in the present

substitution model is much longer than that of positive selection

for successive single compensatory substitutions.

The models JTT/WAG/LG-ML91+20 and KHG-ML200-0,

in which parameters are taken to be equal to the ML estimates for

JTT/WAG/LG in the ML-91+ model and the ML estimates for

KHG in the ML-200 model, are codon-based models correspond-

ing to the JTT/WAG/LG/KHG-F model, respectively. The

model ML-91+ can almost perfectly reproduce JTT, WAG, and

LG. The model ML-200 for the KHG codon substitution matrix

can well reproduce the codon substitution probabilities for the

codon pairs for which any nucleotide change is accompanied by

an amino acid change, although the exchangeabilities of the other

codon pairs are over-estimated for KHG. This means that the

JTT/WAG/LG-ML91+20 and the KHG-ML200-0 models can

be used as a simple substitution model without any loss of

information instead of the empirical substitution matrices of the

JTT/WAG/LG/KHG in maximum likelihood and Bayesian

inferences of phylogenetic trees of amino acid and codon

sequences, respectively. Although the empirical substitution

matrices represent the average tendencies of substitutions over

proteins and species and may lack gene-level resolution [15,16],

the present mechanistic codon model has adjustable parameters

for nucleotide mutation and for the strength of selective

constraints, which can be tailored to specific genes. It is possible

to optimize the selective constraints fwabg for each gene.

However, such a method [12,15,16] is far more computer-

intensive than the present method. The present methods, JTT/

WAG/LG-ML91+2n using ŵwJTT=WAG=LG{ML91z and the KHG-

ML200-n with the ŵwKHG{ML200, provide alternative models for

amino acid/codon substitutions with a small number of ML

parameters in the probabilistic inference of phylogenetic trees. The

number of ML parameters specific to the present model is at most

6 exchangeabilities and 3 equilibrium frequencies for nucleotide

mutations, and 2 parameters for selective constraints. Thus, the

present model requires the same order of cpu time as the

nucleotide substitution model (GTR) does. In other codon models

[21,23], exchangeabilities between amino acids are taken to be

equal to their values in empirical amino acid substitution matrices.

However, in the present codon model, amino acid and codon

exchangeabilities vary according to nucleotide mutation rates and

the strength of selective constraints.

The parameters mjg, fj, and s are differently estimated by the

KHG-ML200-n and the JTT/WAG/LG-ML91+2n using differ-

ent ŵw; see Tables 6, 7, and 8. The ŵwKHG{ML200 yields a smaller

rate of multiple nucleotide changes, a smaller s, a smaller ratio of

transition to transversion exchangeability, and a smaller ratio of

nonsynonymous to synonymous rate per codon than the

ŵwJTT=WAG=LG{ML91z does. Whichever estimation is better, the

present ML estimators m̂mtcjag=m̂m½tc�½ag� for transition-transversion

bias strongly indicate that the transition-transversion bias is not so

large as previously estimated. An excess of transitional over

transversional substitutions was shown in the DNA sequences of

metazoa, and has been assumed to be universal. However, Keller

et al. [41] found a counter example to the transition-transversion

bias from grasshopper pseudogenes. The present ML estimate of

the ratio of transition to transversion exchangeability for the KHG

codon substitution matrix is rather less than 1.0, i.e.,

m̂mtcjag=m̂m½tc�½ag�~0:843 in the ML-200 model, which corresponds

to the overall rate bias of transitions over transversions, 0:427.

Even for the amino acid substitution matrices JTT, WAG, and

LG, the ML-91 model estimates mtcjag=m½tc�½ag� to be less than 1:9,

making the overall rate bias of transitions over transversions less

than 1:0; see Table 3. It should be noted that the ratio of transition

to transversion exchangeability tends to be overestimated if no

multiple nucleotide change is allowed; see Tables S2 and S3. Thus,

the present results indicate that transition-transversion bias is not a

solid assumption. On the other hand, the present results indicate

that transition-transversion bias is stronger in mitochondrial DNA

than in nuclear DNA in accordance with previous understanding;

see Tables 6 and 7.

The ML estimates fŵwJTT=WAG=LG{ML91z

ab g and fŵwKHG{ML200
ab g

significantly correlate with each other and also with the mean

energy increments due to an amino acid replacement. However,

the JTT/WAG/LG-ML91+2n and KHG-ML200-n models fit

substitution data significantly better than the EI-n model; see

Tables 2 and 5. This fact indicates that the differences between the

physico-chemical estimates and the ML estimates fŵwabg for

selective pressure at the amino acid level reflect the actual

tendency of selective constraints for respective types of amino acid

pairs in protein evolution. Eq. 31 indicates that the w is modulated

by site-specific codon frequencies and differentiated from the site-

independent constraints, w�, which may be more similar to the

physico-chemical estimates than the w. The selective constraints
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estimated here may be used as a base line to detect evidence of

positive selection. Models [20,22] in which the dependences of

selective constraints on amino acid pairs are not taken into

account may be improved by introducing them. On the other

hand, it still remains to be examined whether or not the JTT/

WAG/LG-ML91+2n and the KHG-ML200-n perform compa-

rably with cpREV for the maximum likelihood inferences of

phylogenetic trees of chloroplast proteins and with mtREV for

those of mitochondrial proteins. Also, it should be examined which

performs better.

A preliminary calculation has been pursued to examine the

performance of the present substitution models in the ML inference

of a phylogenetic tree. Log-likelihoods of the present models and the

codon models corresponding to the mtREV-F, the JTT-F, the

WAG-F, and the LG-F are calculated and listed in Table 9 for a

phylogenetic tree [6] of the concatenated sequences of 12 protein-

coding sequences encoded on the same strand of mitochondrial

DNA from 20 vertebrate species with 2 races from human. The

phylogenetic tree and the proteins used are those which Adachi and

Hasegawa [6] used to estimate mtREV; the Japanese mtDNA was

not used because it couldn’t be found in the GenBank database. The

coding sequences of each protein were aligned with codon score

matrices by the ClustalW2 [42], and then concatenated. Their

likelihoods on the phylogenetic tree were calculated by the Phyml

[43]. Both the programs have been modified for the analysis of

coding sequences. Log-odds calculated by the KHG-ML200-11

fitted to mtREV were used as the codon score matrices. Positions

with gaps are included for the calculation of the likelihoods. The

codon substitution matrices corresponding to mtREV, JTT, WAG,

LG, and the KHG-derived amino acid substitution matrix

(KHGaa) are calculated in such a way that codon exchangeabilities

for nonsynonymous codon pairs are taken to be equal to expw0

multiplied by the exchangeability of the corresponding amino acid

pair and those for synonymous codon pairs are assumed to be all

equal to the mean amino acid exchangeability. In all models, the

parameter w0 in Eq. 11 was optimized even for the No-Constraints

models, and codon frequencies were taken to be equal to those in

coding sequences. The substitution matrices, JTT, WAG, LG, and

KHG were estimated from nuclear DNA, which use a different

genetic code from vertebrate mtDNA. On the other hand, mtREV

was estimated by a maximum likelihood method from the almost

same set of the protein sequences encoded in mtDNA. Thus, it is

Table 9. Log-likelihoods of a phylogenetic tree [6] of the concatenated sequences of 12 protein-coding sequences encoded on
the same strand of mitochondrial DNA from 20 vertebrate species with 2 races from human.

Codon Substitution #pb ‘z AIC{ ŝs m̂m½tc�½ag� m̂mtcjag=m̂m½tc�½ag�

Modela 117698:7 235517:4

KHGaa-1-Fcd 60 {1450:9 2901:7

LG-1-Fc 60 {1319:3 2638:6

WAG-1-Fc 60 {838:8 1677:6

JTT-1-Fc 60 {444:9 889:7

mtREV-1-Fc 60 0:0 0:0

No-Constraints-1-Fe 60 {931:0 1862:0 (2:46) (0:040) (3:24)

WAG-ML91+21-Fe 60 1821:4 {3642:9 (2:18) (0:524) (3:43)

JTT-ML91+21-Fe 60 2037:8 {4075:6 (3:48) (0:564) (2:01)

LG-ML91+21-Fe 60 2182:3 {4364:5 (3:37) (0:321) (3:82)

EI-1-Fe 60 2195:9 {4391:8 (0:339) (0:737) (3:06)

KHG-ML200-1-Fe 60 2477:0 {4954:0 (2:89) (0:228) (1:64)

No-Constraints-11-F 70 1572:2 {3124:5 0:906 0:273 3:37

EI-12-F 71 2766:7 {5511:3 0:326 0:549 3:60

WAG-ML91+212-F 71 3068:3 {6114:6 1:84 0:471 4:16

JTT-ML91+212-F 71 3075:1 {6128:2 3:57 0:506 2:91

KHG-ML200-12-F 71 3155:8 {6289:5 0:469 0:226 2:50

LG-ML91+212-F 71 3310:0 {6598:1 1:26 0:357 4:32

No-Constraints-11-F-dG4 71 3295:5 {6569:0 0:000 0:182 3:62

EI-12-F-dG4 72 4542:4 {9060:8 0:000 0:392 3:95

JTT-ML91+212-F-dG4 72 4957:0 {9889:9 0:064 0:385 3:11

KHG-ML200-12-F-dG4 72 4990:0 {9956:1 0:000 0:147 2:60

WAG-ML91+212-F-dG4 72 4996:4 {9968:8 0:042 0:342 4:61

LG-ML91+212-F-dG4 72 5212:6 {10401:3 0:029 0:253 4:83

aaIn all models named with a suffix "F", codon frequencies are taken to be equal to those in coding sequences. A suffix "dG4" means the discrete approximation of the C
distribution with 4 categories [44] for rate variation. The parameter w0 in Eq. 11 is optimized in all models.

bThe number of parameters; the value for the mtREV-1-F is not quite correct, because mtREV was estimated from the almost same set of protein sequences [6].
cThe exchangeabilties of nonsynonymous and synonymous codon pairs are equal to expw0 multiplied by those of the corresponding amino acid pairs and all equal to
the mean amino acid exchangeability in the empirical amino acid substitution matrix specified, respectively.
dKHGaa means the amino acid substitution matrix derived from KHG.
eAll parameters except w0 and codon frequencies are fixed to those ML estimates of each model fitted to mtREV.
doi:10.1371/journal.pone.0017244.t009
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expected that the log-likelihood values of the mtDNA phylogenetic

tree for the models, KHGaa-1-F, LG-1-F, WAG-1F, and JTT-1-F

are worse than that for the mtREV-1-F. An important thing is that

the codon models with the selective constraints estimated from

nuclear DNA or by the physico-chemical method yield a much

smaller value of AIC than the mtREV-1-F. One of the effective

parameters is w0 that directly controls the ratio of nonsynonymous

to synonymous substitution rate. It also improves the likelihood to

explicitly take account of rate variations over sites. The discrete

approximation [44] of the C distribution with 4 categories was used

to represent rate variations over sites in the models named with the

suffix "dG4"; the shape parameter a is a ML parameter. An

interesting and reasonable fact is that averaging substitution

matrices over rate becomes unnecessary, i.e., ŝs~0:0, in the case

that rate variations over sites are explicitly taken into account; in the

Yang’s model [26,44], the likelihood of a phylogenetic tree of each

site is averaged over rate. Also, all the present codon-based models

estimate m̂m½tc�½ag�w0:1, which indicates the significance of multiple

nucleotide changes. The present results strongly indicate that the

tendencies of nucleotide mutations and codon usage are character-

istic of a genetic system specific to each species and oranelle, but the

amino acid dependences of selective constraints are more specifc to

each type of amino acid than each species, organelle, and protein

family. Full evaluation will be provided in a succeeding paper.

One may question whether the whole evolutionary process of

protein-coding sequences can be approximated by a reversible

Markov process or not. Kinjo and Nishikawa [45] reported that

the log-odds matrices constructed for 18 different levels of

sequence identities from structure-based protein alignments have

a characteristic dependence on time in the principal components

of their eigenspectra. Although they did not explicitly mention, this

type of temporal process peculiar to the log-odd matrix in protein

evolution is fully encoded in the transition matrices of JTT, WAG,

LG, and KHG. In Fig. S11, it is shown that this characteristic

dependence of log-odds on time can be reproduced by the

transition matrix based on the present reversible Markov model

fitted to JTT; see Text S1 for details. This fact supports the

appropriateness of the present Markov model for codon

substitutions. The present codon-based model can be used to

generate log-odds for codon substitutions as well as amino acid

substitutions. Such a log-odds matrix of codon substitutions would

be useful to allow us to align nucleotide sequences at the codon

level rather than the amino acid level, increasing the quality of

sequence alignments.

As a result, the present model would enable us to obtain more

biologically meaningful information at both nucleotide and amino

acid levels from codon sequences and even from protein

sequences, because this is a codon-based model.

Supporting Information

Text S1 Supporting information consisting of the
following sections. 1. A method for the physico-chemical

evaluation of selective constraints on amino acid replacement. 2.

Models with no amino acid dependences of selective constraints. 3.

A physico-chemical evaluation of selective constraints on amino

acids. 4. Other physico-chemical evaluations of selective con-

straints on amino acids. 5. Evolutionary process of amino acid

substitutions in terms of log-odds.

(PDF)

Data S1 A computer-readable dataset of the ML
estimates of parameters in the ML-200 for KHG, and
the ML-91 and the ML-91+ for LG, WAG, and JTT as well
as the EI.

(TXT)

Figure S1 The ML-87 and the ML-91 models fitted to
WAG. Each element log-O(SST(t̂t,ŝs))ab of the log-odds matrices of

(A) the ML-87 and (B) the ML-91 models fitted to the 1-PAM WAG

matrix is plotted against the log-odds log-O(SWAG(1 PAM))ab

calculated from WAG. Plus, circle, and cross marks show the log-

odds values for one-, two-, and three-step amino acid pairs,

respectively. The dotted line in each figure shows the line of equal

values between the ordinate and the abscissa.

(PDF)

Figure S2 Comparison between various estimates of
selective constraint for each amino acid pair The ML

estimates of selective constraint on substitutions of each amino

acid pair are compared between the models fitted to various

empirical substitution matrices. The estimates ŵwab for multi-step

amino acid pairs that belong to the least exchangeable class at least

in one of the models are not shown. Plus, circle, and cross marks

show the values for one-, two-, and three-step amino acid pairs,

respectively.

(PDF)

Figure S3 Selective constraint for each amino acid pair
estimated from WAG and from LG. The ML estimate,

{ŵwWAG{ML91z
ab in (A) and {ŵwLG{ML91z

ab in (B), of selective

constraint on substitutions of each amino acid pair in the ML-91+
models fitted to the 1-PAM matrices of WAG and LG is plotted

against the mean energy increment due to an amino acid

substitution, (Dêec
abzDêev

ab) defined by Eqs. S1-4, S1-5, and S1-6

in Text S1. The estimates ŵwab for the least exchangeable class of

multi-step amino acid pairs are not shown. Plus, circle, and cross

marks show the values for one-, two-, and three-step amino acid

pairs, respectively.

(PDF)

Figure S4 Comparison of the ML estimates of selective
constraint for each amino acid pair between the ML-87
and the ML-91 models. The ML estimate of selective

constraint for each single step amino acid pair in the ML-87

model fitted to (A) the 1-PAM JTT matrix or (B) the 1-PAM WAG

matrix is plotted against that in the ML-91 model.

(PDF)

Figure S5 Models fitted to each of JTT, WAG, and LG.
Each element log-O(SST(t̂t,ŝs))ab of the log-odds matrix of the

model fitted to each empirical substitution matrix is plotted against

the log-odds log-O(Sobs(1 PAM))ab calculated from the corre-

sponding empirical substitution matrix. Plus, circle, and cross

marks show the log-odds values for one-, two-, and three-step

amino acid pairs, respectively. The dotted line in each figure shows

the line of equal values between the ordinate and the abscissa.

(PDF)

Figure S6 Models fitted to each of cpREV and mtREV.
Each element log-O(SST(t̂t,ŝs))ab of the log-odds matrix of the

model fitted to each empirical substitution matrix is plotted against

the log-odds log-O(Sobs(1 PAM))ab calculated from the corre-

sponding empirical substitution matrix. Plus, circle, and cross

marks show the log-odds values for one-, two-, and three-step

amino acid pairs, respectively. The dotted line in each figure shows

the line of equal values between the ordinate and the abscissa.

(PDF)

Figure S7 Models fitted to the KHG-derived amino acid
substitution matrix. Each element log-O(SST(t̂t,ŝs))ab of the log-

odds matrix of the model fitted to the 1-PAM KHG-derived amino

acid substitution matrix (KHGaa) is plotted against the log-odds log-
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O(Sobs(1 PAM))ab calculated from KHGaa. Plus, circle, and cross

marks show the log-odds values for one-, two-, and three-step amino

acid pairs, respectively. The dotted line in each figure shows the line

of equal values between the ordinate and the abscissa.

(PDF)

Figure S8 The JTT-ML91+212 model fitted to the 1-
PAM KHG codon substitution matrix. Each element log-

O(SST(t̂t,ŝs))mn of the log-odds matrix corresponding to (A) single, (B)

double, and (C) triple nucleotide changes in the JTT-ML91+212

model fitted to the 1-PAM KHG codon substitution matrix is plotted

against the log-odds log-O(SKHG(1 PAM))mn calculated from KHG.

Upper triangle, plus, circle, and cross marks show the log-odds values

for synonymous pairs and one-, two-, and three-step amino acid pairs,

respectively. The dotted line in each figure shows the line of equal

values between the ordinate and the abscissa.

(PDF)

Figure S9 The WAG-ML91+212 model fitted to the 1-
PAM KHG codon substitution matrix. Each element log-

O(SST(t̂t,ŝs))mn of the log-odds matrix corresponding to (A) single, (B)

double, and (C) triple nucleotide changes in the WAG-ML91+212

model fitted to the 1-PAM KHG codon substitution matrix is plotted

against the log-odds log-O(SKHG(1 PAM))mn calculated from KHG.

Upper triangle, plus, circle, and cross marks show the log-odds values

for synonymous pairs and one-, two-, and three-step amino acid pairs,

respectively. The dotted line in each figure shows the line of equal

values between the ordinate and the abscissa.

(PDF)

Figure S10 The LG-ML91+212 model fitted to the 1-
PAM KHG codon substitution matrix. Each element log-

O(SST(t̂t,ŝs))mn of the log-odds matrix corresponding to (A) single,

(B) double, and (C) triple nucleotide changes in the LG-

ML91+212 model fitted to the 1-PAM KHG codon substitution

matrix is plotted against the log-odds log-O(SKHG(1 PAM))mn

calculated from KHG. Upper triangle, plus, circle, and cross

marks show the log-odds values for synonymous pairs and one-,

two-, and three-step amino acid pairs, respectively. The dotted line

in each figure shows the line of equal values between the ordinate

and the abscissa.

(PDF)

Figure S11 Temporal changes of the eigenvalues and the

eigenvectors of the log-odds matrix log-O(SST(t)) calculated by

the ML-91+ model fitted to JTT as a function of sequence identity.

In (A), the solid, the broken, and the dotted lines show the

temporal changes of the first (l1), the second (l2), and the third (l3)

principal eigenvalues, respectively. The inner products of the

eigenvectors with the eigenvectors of the JTT 20-PAM log-odds

matrix, V i(t):V
JTT
j (20{PAM), are shown in (B) for the first

principal eigenvector (i~1), in (C) for the second principal

eigenvector (i~2), and in (D) for the third principal eigenvector

(i~3), by solid lines for j~1, by broken lines for j~2, and by

dotted lines for j~3.

(PDF)

Table S1 ML estimates of the present models without
selective constraints on amino acids for the 1-PAM
substitution matrices of JTT, WAG, cpREV, and mtREV.

(PDF)

Table S2 ML estimates of the present models with the
selective constraints based on mean energy increments
due to an amino acid substitution (EI) for the 1-PAM
substitution matrices of JTT, WAG, cpREV, and mtREV.

(PDF)

Table S3 ML estimates of the present models with the
selective constraints based on the Grantham’s and the
Miyata’s amino acid distances for the 1-PAM substitu-
tion matrices of JTT and WAG.

(PDF)
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