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Abstract

Residue-residue interactions that fold a protein into a unique three-dimensional structure and make it play a specific
function impose structural and functional constraints in varying degrees on each residue site. Selective constraints on
residue sites are recorded in amino acid orders in homologous sequences and also in the evolutionary trace of amino acid
substitutions. A challenge is to extract direct dependences between residue sites by removing phylogenetic correlations
and indirect dependences through other residues within a protein or even through other molecules. Rapid growth of
protein families with unknown folds requires an accurate de novo prediction method for protein structure. Recent attempts
of disentangling direct from indirect dependences of amino acid types between residue positions in multiple sequence
alignments have revealed that inferred residue-residue proximities can be sufficient information to predict a protein fold
without the use of known three-dimensional structures. Here, we propose an alternative method of inferring coevolving site
pairs from concurrent and compensatory substitutions between sites in each branch of a phylogenetic tree. Substitution
probability and physico-chemical changes (volume, charge, hydrogen-bonding capability, and others) accompanied by
substitutions at each site in each branch of a phylogenetic tree are estimated with the likelihood of each substitution, and
their direct correlations between sites are used to detect concurrent and compensatory substitutions. In order to extract
direct dependences between sites, partial correlation coefficients of the characteristic changes along branches between
sites, in which linear multiple dependences on feature vectors at other sites are removed, are calculated and used to rank
coevolving site pairs. Accuracy of contact prediction based on the present coevolution score is comparable to that achieved
by a maximum entropy model of protein sequences for 15 protein families taken from the Pfam release 26.0. Besides, this
excellent accuracy indicates that compensatory substitutions are significant in protein evolution.
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Introduction

The evolutionary history of protein sequences is a valuable

source of information in many fields of science not only in

evolutionary biology but even to understand protein structures.

Residue-residue interactions that fold a protein into a unique

three-dimensional (3D) structure and make it play a specific

function impose structural and functional constraints in varying

degrees on each amino acid. Selective constraints on amino acids

are recorded in amino acid orders in homologous protein

sequences and also in the evolutionary trace of amino acid

substitutions. Negative effects caused by mutations at one site must

be compensated by successive mutations at other sites [1–4],

otherwise negative mutants will be eliminated from a gene pool

and never reach fixation in a population, causing coevolution

between sites [5–8]. Such structural and functional constraints

arise from interactions between sites mostly in close spatial

proximity. Thus, it is suggested and also has been shown that the

types of amino acids [9–16] and amino acid substitutions [6–8,17–

31] are correlated between sites that are close in a protein 3D

structure. Since protein families with unknown folds are growing

as genome and metagenome projects proceed with next-genera-

tion sequencing technologies, it is needed to not only show the fact

of coevolution between closely-located sites in protein structure but

also to accurately predict contact residue pairs enough to achieve

reasonable protein structure prediction [15,16,32]. However,

correlations of amino acid types and amino acid substitutions

result from not only direct but also indirect dependences through

other residues within a protein or even through other molecules

involved in a molecular complex [33,34] such as oligomerization

[28], protein-substrate, protein-protein [12], and protein-DNA.

Also, phylogenetic correlation must be taken into account,

especially in the correlation analysis of amino acid type in a

multiple sequence alignment; otherwise false indications of

coevolution may be led [20,30]. In addition, statistical noise

originating from a small number of homologs and methodological

limitations are obstacles to decode correlations into spatial

relationships between sites. However, protein families consisting

of homologous sequences in a wide range of divergence are now

collected in protein family databases such as Pfam [35], and

become available to reduce statistical noise to a sufficiently small

amount. A present challenge is thus to extract only direct

dependences between sites by excluding indirect correlations

between them from a wide variety of homologous sequences

evolutionarily exploited in a sequence space [11,14–16,29,32].

Extracting essential information from the evolutionary sequence

record have been attempted using global statistical models. A
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Bayesian graphical model was applied to disentangling direct from

indirect dependencies between residue positions in multiple

sequence alignments of proteins [11], and a significant improvement

was achieved in the accuracy of contact prediction [14]. A Bayesian

graphical model was also applied to the analysis of the joint

distribution of substitution events to identify significant associations

among residue sites [29]. Recently, remarkable accuracy of contact

prediction was achieved [15,16] by using a maximum entropy model

[12] of a protein sequence, constrained by the statistics of a multiple

sequence alignment, to infer residue pair coupling. Partial correla-

tion coefficients derived from mutual information of residue pair

coupling were also used to extract direct information [32]. They

developed not only a robust method to extract essential correlations

of amino acid type between residue positions in multiple sequence

alignments, but also showed that inferred residue-residue proximities

can be sufficient information to predict a protein fold without the use

of known three-dimensional structures.

Here, we report an alternative approach of inferring coevolving

site pairs from concurrent and compensatory substitutions

between sites in each branch of a phylogenetic tree. First, for

each protein family, its phylogenetic tree T calculated by the

FastTree [36] is taken from the Pfam database [35] and branch

lengths tb of the tree are optimized by maximizing the likelihood of

the tree in a mechanistic codon substitution model [37,38]. in a

mechanistic codon substitution model [37,38]. The variation of

selective constraints over sites is approximated by a discrete

gamma distribution [39]. Then, substitution probability and mean

changes of physico-chemical properties of side chain accompanied

by amino acid substitutions at each site in each branch of the tree

are estimated with the likelihood of each substitution to detect

concurrent and compensatory substitutions. Dutheil et al. [7]

named such quantities along branches substitution vectors and

used Pearson’s correlation coefficients between substitution vectors

to detect coevolving positions in a molecule. Here, instead of

Pearson’s correlation coefficients that reflect not only direct but

also indirect dependences between sites, partial correlation

coefficients of their characteristic changes accompanied by

substitutions along branches between sites are employed to

remove a linear multiple dependence on characteristic changes

along branches at other sites. In other words, a Gaussian graphical

model [40] is assumed for site dependence, because a conditional

independence between two variables given other variables in a

multi-variate Gaussian distribution is equivalent to zero partial

correlation coefficient between the two variables. It is demon-

strated that unlike Pearson’s correlation coefficients partial

correlation coefficients well reflect direct dependences between

sites, indicating that improper correlations such as indirect and

phylogenetic correlations included in Pearson’s correlation coef-

ficients are well removed in the partial correlation coefficients.

Then, coevolution scores are defined on the basis of partial

correlation coefficients of the various types of characteristic

quantities. It was pointed out that considering compensatory

substitutions [8] and substitutions affecting physico-chemical

properties [5] are useful for detecting coevolving site pairs. Here,

in addition to substitution probability that is a primary quantity,

we consider various kinds of physico-chemical changes of amino

acid accompanied by a substitution, which are not only volume,

charge, and hydrophobicity as used in [8], but also hydrogen-

bonding capability, b and turn propensities, the capability of

aromatic interaction, branched side-chain, and cross-link capabil-

ity. It is shown that compensatory substitutions can be well

detected by finding the negative direct correlation of side-chain

volume, charge, or hydrogen-bonding capability in concurrent

substitutions. The direct correlations of other physico-chemical

properties listed above are also shown to be useful to detect

coevolution between sites. Then, coevolving site pairs are inferred

in the decreasing order of the overall coevolution score. Accuracy

of contact prediction based on the overall coevolution score is

comparable to that by a maximum entropy model [16] of protein

sequences, which was shown to be more accurate than other

prediction methods (mutual information, statistical coupling

analysis [9,13], and Bayesian network model [14] ), for 15 protein

families of the four major SCOP fold classes taken from the Pfam

release 26.0 [35], indicating that the present method can be an

alternative approach for contact prediction. Also, a fact that

contact site pairs can be well predicted by the present method

strongly indicates that compensatory substitutions are significant in

protein evolution, because the present method based on concur-

rent and compensatory substitutions will not work at all if all

substitutions are completely neutral.

Methods

Mean of Characteristic Changes Accompanied by
Substitutions at Each Site in Each Branch of a
Phylogenetic Tree in a Maximum Likelihood Model

Assuming that substitutions occur independently at each site, a

likelihood P(AjT ,H) of a sequence alignment A in a phylogenetic

tree T under a evolutionary model H is represented as a product

over sites of the likelihood of a sequence alignment Ai for site i.

P(AjT ,H)~P
i

P(AijT ,H) ð1Þ

P(AijT ,H)~
X

ha

P(AijT ,H,ha)P(ha) ð2Þ

where the a priori probability distribution of a parameter ha for the

variation of selective constraint [37,38] is assumed to be equal to

P(ha), Here, a mechanistic codon substitution model [37,38] is

used as the evolutionary model H. Then, if substitutions are

assumed to be in the equilibrium state of a time-reversible Markov

process, the likelihood of a sequence alignment Ai for site i will be

calculated by taking any node as a root node. Let us assume here

that the root node is a left node (vbL) of a branch b.

P(AijT ,H,ha)~
X

k

X

l

P(AijvbL~k,vbR~l,T ,H,ha) ð3Þ

P(AijvbL~k,vbR~l,T ,H,ha):

PbL(AijvbL~k,T ,H,ha)fkP(ljk,tb,H,ha)PbR(AijvbR~l,T ,H,ha) ð4Þ

where k and l depending on the evolutionary model correspond to the

type of codon in the present codon substitution model, and fk is the

equilibrium frequency of k. P(ljk,tb,H,ha) is a substitution probability

from k to l at the branch b whose length is equal to tb.

PbL(AijvbL~k,T ,H,ha) is a conditional likelihood of the left subtree

with vbL~k [41]. In the maximum likelihood (ML) method for

phylogenetic trees, the tree T and parameters H are estimated by

maximizing the likelihood.

(T̂T ,ĤH)~ arg max
T ,H

P(AjT ,H) ð5Þ

Prediction of Contact Residue Pairs
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Then, the mean Dib of any quantity Dkl accompanied by

substitutions from k to l at each site i in each branch b can be

calculated as follows; Dkl corresponds to characteristic changes for

coevolution such as volume and charge changes due to amino acid

substitutions, and is defined by Eqs. 12–22 in the next section.

Dib(Ai,T̂T ,ĤH,ha):
X

k,l

Dk,lP(AijvbL~k,vbR~l,T̂T ,ĤH,ha)

P(AijT̂T ,ĤH,ha)
ð6Þ

Dib(Ai,T̂T ,ĤH)~
X

ha

Dib(Ai,T̂T ,ĤH,ha)P(hajAi,T̂T ,ĤH) ð7Þ

where P(hajAi,T̂T ,ĤH) is a posterior probability calculated from

P(hajAi,T̂T ,ĤH)~
P(AijT̂T ,ĤH,ha)P(ha)

P(AijT̂T ,ĤH)
ð8Þ

A Bayesian method for mapping mutations on a phylogenetic tree

was first discussed by Nielsen [42], and the present formulation of

Eqs. 6 and 7 was introduced as a substitution vector along

branches at site i by Dutheil et al. [7] for detecting coevolving

positions in a molecule. The method named substitution mapping

for mapping evolutionary trajectories of discrete traits on

phylogenies was further extended [43–45], and was shown to

provide extremely robust statistics [46,47].

Pearson’s and Partial Correlation Coefficients of Feature
Vectors between Sites

If Dkl is defined to be equal to 1 for k=l and 0 for k~l,

Dib(Ai,T̂T ,ĤH) will represent the expected value of substitution

probability at site i in branch b. Let us define a vector Di as

follows, and consider the correlation of the two vectors, Di and Dj .

D i:( . . . , Dib(Ai,T̂T ,ĤH){

P
b

Dib(Ai,T̂T ,ĤH)

P
b

1
, . . . )

0 ð9Þ

where 0 denotes the transpose of a matrix. A correlation matrix C
is defined to be a matrix whose (i,j) element is the correlation

coefficient rDiDj
between Di and Dj .

Cij:rDiDj
~

(D i,D j)

ED iEED jE
ð10Þ

where (Di,Dj) denotes the inner product of the two vectors.

The correlation between sites i and j may be an indirect

correlation resulting from correlations between sites i and k and

between sites k and j. To remove such indirect correlations, partial

correlation coefficients are used here. The partial correlation

coefficient is a correlation coefficient between residual vectors

(P\fDk=i,jgDi and P\fDk=i,jgDj ) of given two vectors that are

perpendicular to a subspace consisting of other vectors except

those two vectors (Di and Dj ) and therefore cannot be accounted

for by a linear multiple regression on other vectors; P\fDk=i,jg is a

projection operator to a space perpendicular to the subspace. If the

correlation matrix is regular, then the partial correlation

coefficients Cij will be related to the (i,j) element of its inverse

matrix.

Cij:rP\fDk=i,jg
DiP\fDk=i,jg

Dj
:

(P\fDk=i,jgD i , P\fDk=i,jgD j)

EP\fDk=i,jgD iE EP\fDk=i,jgD jE

~{
(C{1)ij

((C{1)ii(C
{1)jj)

1=2

ð11Þ

Characteristic Variables Indicating Coevolution between
Sites

The following characteristic changes accompanied by substitu-

tions whose correlations indicate coevolution between sites have

been used as Dk,l in Eq. 6.

1. Occurrence of amino acid substitution.

The most primary quantity is one (Ds) that is defined as follows

and indicates the substitution probability of amino acid at a site.

Ds
k,l:1{Dak,al

ð12Þ

where Dak,al
is the Kronecker’s D that takes 1 if ak~al and 0

otherwise. The ak is the type of amino acid corresponding to k,

which denotes the type of codon in the present codon model.

Ds
ib(Ai,T̂T ,ĤH) in Eq. 7 indicates the expected value of the

probability of amino acid substitution at site i in branch b. This

quantity was also used [7,19,29] for the prediction of contact

residue pairs in protein structures.

2. Change of a side chain volume accompanied by an amino

acid substitution.

Protein structures must be tightly packed [48], and therefore

mutations between amino acids whose side chain volumes

significantly differ from each other tend to unstabilize protein

structures and therefore will be eliminated from a gene pool by

selection [49] unless the volume change is compensated by

successive mutations at sites closely located in protein structures.

Thus, the volume changes of side chains caused by amino acid

substitutions are used to detect coevolution between closely located

sites in protein structures.

Dv
k,l:side chain volumeal

{side chain volumeak ð13Þ

where side chain volumeal
means the volume of side chain al.

The amino acid volumes used here are the mean volume occupied

by each type of amino acid in protein structures, and taken from

the set named BL+ in the Table 6 of [50]; the volume of a half

cystine (labeled as ‘‘cys’’ in the table) is used here for a cysteine.

3. Change of a side chain charge accompanied by an amino

acid substitution.

Charge-charge interactions in protein structures are known to

be significant. Substitutions that keep favorable charge-charge

interactions are expected to be advantageous in selection.

Dc
k,l:side chain chargeal

{side chain chargeak ð14Þ

where side chain chargeak
represents a charge of side chain type

ak and takes z1 for positively charged side chains (arg and lys),

0:1 for his, and {1 for negatively charged ones (asp, glu).

4. Change of hydrogen-bonding capability accompanied by an

amino acid substitution.

One of the most important interactions to stabilize protein

structures is a hydrogen-bonding interaction. Substitutions that

keep hydrogen-bonds will be advantageous in selection. In order to

Prediction of Contact Residue Pairs
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detect whether hydrogen-bonds between side chains can be kept

despite substitutions, the change of hydrogen-bonding capability is

defined here as.

Dhb
k,l:acceptor capabilityal

{acceptor capabilityakz

donor capabilityal
{donor capabilityak ð15Þ

where acceptor capabilityak
takes {1 if a side chain ak can be an

hydrogen-bonding acceptor and 0 otherwise. Donor capabilityal

takes z1 if a side chain al can be a hydrogen-bonding donor and

0 otherwise. Hydrogen-bonding acceptors are asn, asp, gln, glu,

his, ser, thr, and tyr. Hydrogen-bonding donors are arg, asn, gln,

his, lys, ser, thr, trp, and tyr. A negative correlation is expected for

this quantity between closely located sites in a protein 3D

structure.

5. Change of hydrophobicity accompanied by an amino acid

substitution.

Also, hydrophobic interactions are crucial for a polypeptide

chain to be folded into a unique three-dimensional structure.

Hydrophobic interactions may be correlated between substitutions

at nearby sites in a protein 3D structure.

Dh
k,l:ealr{eakr ð16Þ

where eakr is the mean contact energy of an amino acid ak with

surrounding residues (r) in protein structures; see [51] for its exact

definition.

6. Change of b propensities accompanied by an amino acid

substitution.

Changes of b and turn propensities [52] are also examined. The

change of a propensity [52] (Da
k,l:a propensityal

{a propensityak
)

is also examined but it is not used to define the overall coevolution

score.

Db
k,l:b sheet propensityal

{b sheet propensityak ð17Þ

where b sheet propensityak
is the value of b sheet propensity [52]

of amino acid ak.

7. Change of turn propensities accompanied by an amino acid

substitution.

Dt
k,l: turn propensityal

{turn propensityak ð18Þ

where turn propensityak
is the value of turn propensity [52] of

amino acid ak.

8. Change of the capability of aromatic interaction accompa-

nied by an amino acid substitution.

Dar
k,l:d aromatic side chains ,al

{d aromatic side chains ,ak ð19Þ

where d aromatic amino acids,ak is equal to 1 if ak is one of aromatic

side-chains (his, phe, trp, and tyr) and 0 otherwise.

9. Change of branched side-chain accompanied by an amino

acid substitution.

Dbr
k,l:d aliphatic branched side chains ,al

{d aliphatic branched side chains ,ak ð20Þ

where D aliphatic branched side chains,ak is equal to 1 if ak is one of

aliphatic branched side-chains (ile, leu and val), and 0 otherwise.

10. Change of cross-link capability accompanied by an amino

acid substitution.

Dcl
k,l:d cross link ,al

{d cross link ,ak ð21Þ

where D cross link,ak is equal to 1 if ak is one of asn, gln, ser and thr,

and 0 otherwise.

11. Change of ionic side-chain accompanied by an amino acid

substitution.

Dion
k,l:d inonic side chains ,al

{d inonic side chains ,ak ð22Þ

where d ionic side chains,ak is equal to 1 if ak is one of inonic side-

chains (asp, glu, arg, and lys), 0.1 if ak is his, and 0 otherwise.

The correlation coefficients (Cij ) and the partial correlation

coefficients (Cij ) calculated from the feature vectors Dx
k are denoted

by Cx
ij and Cx

ij , respectively, where x[fs,v,c,hb,h,b,t,ar,br,cl,iong.
Dutheil and Galtier [8] employed as Dkl substitution probabil-

ity, difference of side-chain volume, difference of side-chain

charge, difference of side-chain polarity, and Grantham physico-

chemical distance [53]. Side-chain polarity as defined by

Grantham is essentially the same with hydrophobicity used here.

The Grantham physico-chemical distance is a function of volume

and polarity, and corresponds to none of quantities used here.

Protein families and Sequences Used
In order to calculate partial correlation coefficients between sites

by taking the inverse of a covariance or correlation matrix, it must

be regular so that the dimension of feature vector, which is equal

to the total number of branches (nb~2n otu{3, where n otu

denotes the number of OTUs.) in the present method, must be at

least more than or equal to the dimension of the correlation/

covariance matrix, which is equal to the number of sites; even if

the matrix is singular, partial correlation coefficients may be

calculated for some site pairs but not all by using projection

operators according to the definition of a partial correlation

coefficient in Eq. 11. This restriction is reasonable, because the

dimension of feature vector that describes each site must be large

enough to distinguish each site from other sites. To obtain

statistically reliable numbers, even more sequences than 10 times

as many as sites may be needed. In the Pfam database [35],

protein domain families consisting of many thousands of homologs

(orthologs and paralogs) are included, and each family is expected

to be more populated as metagenome projects proceed with next-

generation sequencing technologies. Protein domain families used

in [16] to infer residue pair couplings in multiple sequence

alignments are appropriate to allow us to compare prediction

accuracies between the present method and their method. These

protein domain families in the Pfam release 26.0 (November 2011)

are listed in Table 1. Also, Table 1 shows the Uniprot ID and

corresponding protein coordinates (PDB ID) of a target protein in

each protein family, for which co-evolving site pairs are predicted.

In the Pfam database, there are two sets of sequence alignments

for each protein family; a seed alignment and a full alignment.

Also, a phylogenetic tree calculated from each alignment by the

FastTree [36] is available. Here the seed alignment and its

phylogenetic tree are used to estimate parameters in a mechanistic

codon substitution model [37,38]; refer to the methods section.

With those parameters optimized for the seed alignment in the

codon-based model, posterior means of characteristic variables at

each site in each branch of a phylogenetic tree are estimated for

subsets of a full alignment, after branch lengths are optimized.

Prediction of Contact Residue Pairs
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The full alignments include closely-related sequences whose

differences are less than 0.01. The number of branches (nb) in a

phylogenetic tree is proportional to the number of OTUs (n otu)

(operational taxonomic units that correspond to sequences in the

present case); nb~2n otu{3 for an unrooted tree. Computational

time required for the present calculation increases with increasing

number of branches. Including closely-related sequences requires

computationally intensive calculation, although it is not much

informative; invariant sites do not have any information in the

present method, which is designed to detect concurrent and

compensatory substitutions between sites in proteins. Thus, subsets

made by excluding closely-related sequences from the Pfam full

alignments are used in the present calculations. The subsets of a

full alignment and their phylogenetic trees are made by removing

OTUs that are connected to the parent nodes with branches

shorter than a certain threshold (Tbt), although seed sequences and

a target protein are not removed.

In addition, to reduce a computational load in the calculation of

the likelihood of a phylogenetic tree, only site positions where

amino acids are found in the target protein are extracted from the

multiple sequence alignment and used in the present analysis.

Site positions that are represented by the lower case of

characters in Pfam alignments were excluded in the evaluation

of prediction accuracy for comparison with the contact prediction

published in [16].

A Mechanistic Codon Substitution Model for the
Maximum Likelihood Inference of Phylogenetic Tree

A mechanistic codon substitution model, in which each codon

substitution rate is proportional to the product of a codon

mutation rate and the average fixation probability depending on

the type of amino acid replacement, has advantages [37,38] over

nucleotide, amino acid, and empirical codon substitution models

in evolutionary analysis of protein-coding sequences, because

mutation at the nucleotide level and selection at the amino acid

level can be separately evaluated. Even for amino acid sequences

of OTUs (operational taxonomic units), the mechanistic codon

substitution model with the prior assumption of equal codon usage

for them yields smaller AIC values (Akaike Information Criterion)

than any amino acid substitution model does (unpublished). Thus,

the mechanistic codon substitution model [38] is used here to

evaluate the likelihood of a phylogenetic tree and the posterior

means of characteristic variables at each site in each branch.

In the mechanistic codon substitution model, in which

substitutions are assumed to be in the stationary state of a time-

homogeneous reversible Markov process, the substitution proba-

bility matrix in time t is represented as exp Rt with a substitution

rate matrix R, which is defined as.

Rmn~C onst Mmn
fn

f mut
n

ewmn for m=n ð23Þ

where Mmn is the mutation rate from codon m to n, f mut
n is the

equilibrium frequency of codon n in nucleotide mutations, fn is the

equilibrium codon frequency,
fn

f mut
n

ewmn is the average rate of

fixation, and wmn is the selective constraints for mutations from m
to n; refer to [38] for details. Assuming that nucleotide mutations

occur independently at each codon position but multiple

nucleotide mutations in a codon can occur in infinitesimal time,

Table 1. Protein families used.

Pfam ID� Seed�� Full} Target protein domain Fold #sites

#seqs Length #seqs Length Uniprot ID}} PDB ID{ type /Length{{

Trans_reg_C 362 114 35180 269 OMPR_ECOLI/156-232 1ODD-A:156-232 a 76/77

CH 202 249 5756 650 SPTB2_HUMAN/176-278 1BKR-A:5-107 a 101/103

7tm_1 64 434 26656 2354 OPSD_BOVIN/54-306 1GZM-A:54-306 a (tm) 248/253

SH3_1 61 56 8993 210 YES_HUMAN/97-144 2HDA-A:97-144 b 48/48

Cadherin 57 129 18808 494 CADH1_HUMAN/267-366 2O72-A:113-212 b 91/100

Trypsin 71 348 14720 1356 TRY2_RAT/24-239 3TGI-E:16-238 b 212/216

Kunitz_BPTI 151 81 3090 209 BPT1_BOVIN/39-91 5PTI-A:4-56 azb 53/53

KH_1 399 104 11484 280 PCBP1_HUMAN/281-343 1WVN-A:7-69 azb 57/63

RRM_1 79 79 31837 580 ELAV4_HUMAN/48-118 1G2E-A:41-111 azb 70/71

FKBP_C 174 247 11034 845 O45418_CAEEL/26-118 1R9H-A:26-118 azb 92/93

Lectin_C 44 136 6530 801 CD209_HUMAN/273-379 1SL5-A:273-379 azb 103/107

Thioredoxin 50 123 16281 609 THIO_ALIAC/1-103 1RQM-A:1-103 a=b 99/103

Response_reg 57 157 103232 804 CHEY_ECOLI/8-121 1E6K-A:8-121 a=b 110/114

RNase_H 65 246 13801 574 RNH_ECOLI/2-142 1F21-A:3-142 a=b 128/140

Ras 61 229 13525 1461 RASH_HUMAN/5-165 5P21-A:5-165 a=b 159/161

�Pfam release 26.0 (November 2011) was used.
��The number of sequences and the length of alignment included in the Pfam seed alignment.
}The number of sequences and the length of alignment included in the Pfam full alignment.
}}Target protein member in the Pfam family.
{A protein structure corresponding to the target protein domain.
{{Site positions that are represented by the lower case of characters in Pfam alignments were excluded in the evaluation of prediction accuracy for comparison with the
contact prediction published in [16].
{Transmembrane a.
doi:10.1371/journal.pone.0054252.t001
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the mutation rate matrix M is approximated with 9 parameters;

the ratios of nucleotide mutation rates, mtcjag=m½tc�½ag�, mag=mtcjag,

mta=m½tc�½ag�, mtg=m½tc�½ag�, and mca=m½tc�½ag�, the relative ratio

m(:m½tc�½ag�) of multiple nucleotide changes, and the equilibrium

nucleotide frequencies in nucleotide mutations, f mut
a , f mut

c , and

f mut
g . The selective constraint wmn for a protein family is

approximated with a linear function of the mean selective

constraints that were evaluated [37] by ML-fitting a substitution

matrix based on the mechanistic codon model to an empirical

amino acid substitution matrix. Here we use the mean selective

constraints w LG
mn derived from the empirical amino acid substitu-

tion matrix LG [54]. The slope b and a constant term w0 are

parameters; wmn~bw LG
mn zw0. The selective constraint wmn is

assumed to vary across sites and the variation of selective

constraints [38] has been approximated by a discrete gamma

distribution [39] with 4 categories. Thus, one more parameter is a

shape parameter a for the discrete gamma distribution. In the

result, 12 parameters in addition to the equilibrium frequencies of

codons must be determined in this model. See [38] for full details

of these parameters.

The equilibrium frequencies of codons are estimated to be equal

to codon frequencies in sequences of OTUs with the assumption of

equal codon usage for amino acid sequences. Other 12 parameters

were estimated by maximizing the likelihood of the Pfam reference

tree of Pfam seed sequences. Then, the ML estimates of the

parameters obtained from the Pfam seed sequences are used to

evaluate branch lengths and posterior means of characteristic

variables at each site in each branch of Pfam reference trees for the

subsets of Pfam full alignments. Pfam reference trees taken from

the Pfam were used for the tree topologies, because optimizing tree

topologies for more than a few thousands of sequences require too

much computational time. Branch optimization of phylogenetic

trees and posterior means of characteristic variables are calculated

by using Phyml [55] modified for the mechanistic codon

substitution model.

Definition of Contact Residue Pairs in Protein Structures
Contact residue pairs are arbitrarily defined here as residue

pairs whose minimum atomic distances are shorter than 5 Å and

which are separated by 6 or more residues along a peptide chain.

This definition, especially the latter condition, which was used in

Marks et al. [16], is employed here only for the comparison of the

present predictions with their predictions of contact residue pairs.

The PDB ID of a protein structure used for a target protein in

each Pfam family is listed in Table 1. The amino acid sequences of

these PDB entries are just the same as those of the Uniprot IDs,

which are also listed in Table 1.

Results

Framework of the Present Method
The framework of the present method is shown in Fig. 1; refer

to the methods sections for details. For each protein family, its

phylogenetic tree T calculated by the FastTree [36] is taken from

the Pfam database [35] and branch lengths tb of the tree are

optimized by maximizing the likelihood of the tree in a

mechanistic codon substitution model [37,38]. Then, the average

changes (Dib) of quantities, which are characteristic of concurrent

and compensatory substitutions, accompanied by substitutions at

each site i in each branch b of the phylogenetic tree T̂T are

estimated with the likelihood of each substitution. Their correla-

tion coefficients (Cij:rDiDj
) along branches between sites are

calculated, and converted to partial correlation coefficients (Cij ),

which are correlation coefficients between residual vectors

(P\fDk=i,jgDi and P\fDk=i,jgDj ) of given two vectors that are

perpendicular to a subspace consisting of other vectors except

those two vectors (Di and Dj ) and therefore cannot be accounted

for by a linear multiple regression on other vectors. Finally,

coevolution scores (rx
ij ) based on the partial correlation coefficients

are calculated and an overall coevolution score (rij ) is used to rank

site pairs for close spatial proximity.

The following characteristic changes defined by Eqs. 6–7, Eq. 9,

and Eqs. 12–22 in the Methods section are used as the feature

vector Di to detect concurrent and compensatory substitutions

between sites; (1) occurrence of amino acid substitution: Ds
i , (2)

side-chain volume: Dv
i , (3) side-chain charge: Dc

i , (4) hydrogen-

bonding capability: Dhb
i , (5) hydrophobicity: Dh

i , (6) b propensity:

Db
i , (7) turn propensity: Dt

i , (8) aromatic interaction: Dar
i , (9)

branched side-chain: Dbr
i , (10) cross-link capability: Dcl

i , and (11)

ionic side-chain: Dion
i . The change of a propensity is also examined

but not used to define an overall coevolution score. The

correlation coefficients (Cij ), the partial correlation coefficients

(Cij ), and the coevolution score calculated from the feature vectors

Dx
i are denoted by Cx

ij , Cx
ij , and rx

ij , respectively, where

x[fs,v,c,hb,h,b,t,ar,br,cl,iong.

Correlation Versus Partial Correlation Coefficients
First, we examined how differently correlation coefficients and

partial correlation coefficients of substitution probabilities between

sites identify dependent site pairs. The distribution of Pearson’s

correlation coefficient in the case of no correlation can be well

approximated by the Student’s t distribution. Therefore, here a

correlation coefficient rt corresponding to the E-value Et~0:001
(the P-value Pt~Et=n pairs) in the Student’s t-distribution of the

degree of freedom df~nb{2 is used as a threshold for

significance; where n pairs is the number of site pairs and

nb~2n otu{3 is the number of branches in a unrooted

phylogenetic tree.

In Table 2, correlation coefficients (rDs
iD

s
j
) and partial correlation

coefficients (rP\D
s
iP\D

s
j
) of substitution probabilities along branches

between sites are classified into four categories; significantly

positive, positive but insignificant, negative but insignificant,

significantly negative. In addition, sites pairs in each category

are classified according to whether they are contact residue pairs in

the protein 3D structure. Contact residue sites are arbitrarily

defined as residue pairs whose minimum atomic distances are

shorter than 5Å, and which are separated by 6 or more residues

along a peptide chain. The upper table shows results for Pearson’s

correlation coefficients and the lower table does those for partial

correlation coefficients. Significantly-positive correlation coeffi-

cients are found for almost all site pairs. In the phylogenetic trees

of these protein families branch lengths are completely heteroge-

neous. The expected value of the probability of amino acid

substitution in a branch is an increasing function of branch length;

Ds
ib&(1{ exp ({mitb)) where mi is an amino acid substitution rate

for site i. Thus, the Pearson’s correlation coefficients of the

expected values of substitution probability over branches between

sites should be significantly positive, as shown in Table 2. In other

words, a main contribution to the correlation coefficients in this

case is a phylogenetic correlation, which masks both direct and

indirect correlations through other sites; this type of phylogenetic

correlation does not exist in the correlation coefficients of physico-

chemical changes due to substitutions, because there is no such a

simple relationship between the physico-chemical change and

branch length. This type of correlation of substitution probability
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originating from phylogenies can be mostly removed by removing

a linear multiple dependence on feature vectors at other sites from

the feature vectors at a given site pair, because the expected value

of substitution probability in a branch at a site is approximately

proportional to the average of substitution probabilities on the

branch over sites. Such an operation on feature vectors can also

remove indirect correlations through other sites, although only

linear multiple dependences on feature vectors at other sites can be

removed.

A partial correlation coefficient defined in Eq. 11 is a correlation

coefficient between residuals that cannot be accounted for by a

linear multiple regression on the vectors of characteristic changes

along branches at other sites. In the case in which dependences on

other sites in the variation of substitutions are removed,

significantly positive correlations (rwrt) are found only in a

limited number of site pairs, and most site pairs show insignificant

correlations. Furthermore, site pairs in the category of significant-

ly-positive correlation tend to be contact residue site pairs with

significantly-high probabilities; see the column of positive predic-

tive value, PPV :TP=(TPzFP), where TP and FP are the

numbers of true and false contact residue pairs, respectively.

In Table 3, the fourth and the fifth columns show the PPVs of

predictions in which a given number of site pairs are predicted as

contacts in the decreasing order of the correlation coefficients or

the partial correlation coefficients of substitution probabilities,

respectively. The use of the partial correlation coefficients

remarkably increase the PPV of contact prediction by removing

the phylogenetic and also indirect correlations. These results

clearly indicate that the partial correlation coefficients represent

the strength of the direct dependences of substitutions between

sites.

Coevolution Score for Site Pairs
Concurrent substitutions between sites require that the direct

correlation of substitutions must be positive. Therefore, only

positive values of the partial correlation coefficients (Cs
ij ) are used to

define a coevolution score (rs
ij ) based on concurrent substitutions.

rs
ij:max ( Cs

ij , 0 ) ð24Þ

For all other characteristic variables employed to detect

coevolving site pairs, the condition of concurrent substitutions

between sites are a premise. Thus, instead of using partial

correlations of characteristic variables themselves, the geometric

mean of the partial correlation coefficient of each characteristic

variable and the coevolution score based on concurrent substitu-

tions is used as a coevolution score based on each characteristic

change.

Figure 1. Framework of the present model. See text for details.
doi:10.1371/journal.pone.0054252.g001
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rx
ij:sgn Cx

ij (jrs
ijCx

ij j)1=2 for 1emx[fv,c,hb,h, . . .g ð25Þ

As mentioned in the Method section, negative correlations are

required for characteristic variables such as volume, charge, and

hydrogen bonding capacity to reflect compensatory substitutions.

In Table 4, TP and FP over all 15 protein families listed in Table 2

for each category of significantly positive (rx
ij§rt) and negative

(rx
ijƒ{rt) correlations under the condition of jrx

ij j§rs
ij§rt are

listed for each characteristic variable. In the cases of volume,

charge, and hydrogen bonding capacity, PPV for contact residue

pairs is clearly larger in the category of significantly negative

correlation than significantly positive correlation, indicating that

these quantities to detect compensatory substitutions between sites

are good predictors for close spatial proximity. Besides, there are

more site pairs with significantly negative correlations than with

significantly positive correlations, clearly indicating the presence of

structural constraints against these physico-chemical changes.

To improve contact prediction by using characteristic variables

rx together with the characteristic variable rs of concurrent

substitutions, the PPV for the category of significantly positive or

negative correlations should be larger than the PPV for concurrent

substitutions. Both categories of significantly positive and negative

correlations show better PPVs in the characteristic variables of

hydrophobicity, b and turn propensities, aromatic interaction and

branched side-chain. In the characteristic variables of cross-link

capability and ionic side-chain, only the category of significantly

positive correlation shows better PPV than the category of

significantly positive correlation for concurrent substitutions. The

a propensity is not effective to detect contact residue pairs,

although it may be effective to detect residue pairs within a helix or

within helices. Based on these results, an overall coevolution score

for site pair (i,j) is defined here as.

rij:max½rs
ij , max ({rv

ij ,0), max ({rc
ij ,0), max ({rhb

ij ,0),

jrh
ij j,jr

b
ij j,jrt

ij j,jrar
ij j,jrbr

ij j, max (rcl
ij ,0), max (rion

ij ,0)� ð26Þ

In Table 3, the different effects of the correlation and the partial

correlation coefficients of the characteristic variables other than

substitution probability on contact prediction accuracy are shown

in the sixth and seventh columns, respectively. The PPVs shown in

the seventh column, for which a given number of site pairs are

predicted as contacts in the decreasing order of the overall

coevolution score defined by Eq. 26 with Eq. 25, are mostly better

than the PPVs in the sixth column, for which

rx
ij~sgnCx

ij (jrs
ijC

x
ij j)1=2 with x=s is supposed instead of Eq. 25.

This result indicates that indirect correlations through other

residues can be reduced by the use of partial correlation

coefficient.

Contact Prediction based on the Overall Coevolution
Score rij

Coevolving sites pairs are selected for contacts in the decreasing

order of the overall coevolution score rij . Although this score for

coevolution appears to be able to predict contact site pairs,

preliminary results of contact prediction indicate that both

terminal sites in multiple sequence alignments often have large

values of rx
ij (x=s) for any other site, and also that there are a few

sites showing extremely large values for
P

j H(rij{rt); the H

denotes the Heaviside step function. Such an anomalous feature

may indicates a poor quality at these sites in multiple sequence

alignments. Although a method for the assessment of alignment

confidence was proposed [56], the following simple strategy for

terminal sites is employed here.

1. the coevolution scores of rx
ij (x=s) are ignored for both

terminal sites in multiple sequence alignments; that is, rij:rs
ij .

2. Also, if
P

j H(rij{rt)w15, rij:rs
ij will be used for site i, and

3. if
P

j H(rs
ij{rt)w15, rij:0 will be used and such a site will be

excluded in contact prediction.

The threshold value rt used here is the value of correlation

coefficient corresponding to E� value~0:0001 in the Student’s t-

distribution. The threshold number of contacts per residue, 15, is

appropriate for the present case in which E� value~0:0001 and

residue pairs separated by 5 or fewer positions in a sequence are

excluded in the present predictions for comparison with those

based on the DI score [16]. In the present contact predictions, only

one site that is the N-terminal site in the multiple sequence

alignment for the KH_1 was excluded as an anomalous site.

Needless to say, the norm of any characteristic change vector is

almost zero for invariant sites; EDiE^0. Therefore, invariant sites

are excluded from contact prediction in the present method.

The coevolution scores, the overall coevolution score and rank

of each site pair in each protein are listed in text files provided as

Data S1.

Contribution of Each Coevolution Score, rx
ij , on Contact

Prediction
Contribution of each coevolution score, rx

ij , on contact

prediction is shown in Fig. 2, in which average PPVs over all 15

proteins are plotted against the number of characteristic variables

used to define an overall coevolution score. The solid and dotted

lines correspond to predictions in which the ratio of the predicted

to the true contacts is equal to 1=3 or 1=4, respectively. The plus

marks and open circles show the averages of PPV over all 15

proteins and the values of
P

i TPi=(
P

i TPizFPi), respectively,

where the sum is taken over all 15 proteins. The characteristic

variables except a propensity listed in Table 4 are added in the

listed order to define an overall coevolution score in Eq. 26; that is,

(1) occurrence of amino acid substitution, (2) side-chain volume, (3)

charge, (4) hydrogen-bonding capability, (5) hydrophobicity, (6) b
and (7) turn propensities, (8) aromatic interaction, (9) branched

side-chain, (10) cross-link capability, and (11) ionic side-chain. The

dependence of PPV on the number of characteristic variables used

for each protein are shown in Fig. S1. These figures show that in

average the prediction accuracy of contact site pairs is improved

by adding the characteristic variables in the order above, although

the prediction accuracy of each protein is not always improved,

and the average increments of prediction accuracy by adding the

characteristic variables one by one are not large.

Accuracy of Contact Site Pairs Predicted on the basis of
the Overall Coevolution Score

Accuracies of predictions based on the overall coevolution score

and on the direct information (DI) score [16] calculated by a

maximum entropy model, which was shown to be more accurate

than other prediction methods (mutual information, statistical

coupling analysis [9,13], and Bayesian network model [14] ), are

compared by using three measures in Table 5 for protein families

listed in Table 1; the predictions based on the DI are taken from
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http://cbio.mskcc.org/foldingproteins/Appendix_A1. Those

three measures are PPV, mean Euclidean distance from predicted

site pairs to the nearest true contact (MDPNT) in the 2-

dimensional sequence-position space, and the mean Euclidean

distance from every true contact to the nearest predicted site pair

(MDTNP). The MDPNT and MDTNP, which were defined and

used in [16], are qualitative measures of false positives and of the

spread of predicted site pairs over true contacts, respectively.

Smaller values of these measures indicate better predictions.

Table 2. Correlation (Cij:rDs
iD

s
j
) versus partial correlation (Cij:rP\ Ds

i P\ Ds
j
) coefficients of concurrent substitutions between sites.

Pfam ID Tbt
� n otu

� Cs
ij§rt

�� rt
��

wCs
ijw0 0wCs

ijw{rt
�� {rt

��
§Cs

ij

}{ }} }{ }} }{ }} }{ }}

TP:FP PPV TP:FP PPV TP:FP PPV TP:FP PPV

Trans_reg_C 0.12 7720 102:2282 0.04 1:30 0.03 0:0 – 0:0 –

CH 0.01 2960 167:4226 0.04 2:73 0.03 0:2 0.0 0:0 –

7tm_1 0.1 6302 358:28576 0.01 0:0 – 0:0 – 0:0 –

SH3_1 0.01 4160 74:674 0.10 7:60 0.10 0:5 0.0 0:0 –

Cadherin 0.06 7617 214:3333 0.06 1:46 0.02 0:7 0.0 0:0 –

Trypsin 0.1 6688 617:20312 0.03 0:0 – 0:0 – 0:0 –

Kunitz_BPTI 0.01 2130 86:799 0.10 11:48 0.19 0:2 0.0 0:0 –

KH_1 0.01 5114 78:1116 0.07 1:41 0.02 0:4 0.0 0:0 –

RRM_1 0.15 7684 119:1839 0.06 0:0 – 0:0 – 0:0 –

FKBP_C 0.01 5695 199:3445 0.05 0:10 0.0 0:1 0.0 0:0 –

Lectin_C 0.01 4479 234:4319 0.05 1:19 0.05 0:0 – 0:0 –

Thioredoxin 0.06 7483 188:4180 0.04 0:3 0.0 0:0 – 0:0 –

Response_reg 0.46 7613 202:5266 0.04 0:1 0.0 0:0 – 0:0 –

RNase_H 0.01 4782 271:7152 0.04 0:5 0.0 0:0 – 0:0 –

Ras 0.02 6390 329:11304 0.03 0:0 – 0:0 – 0:0 –

Pfam ID #contacts/#sites Cs
ij§rt

�� rt
��

wCs
ijw0 0wCs

ijw{rt
�� {rt

��
§Cs

ij

}{ }} }{ }} }{ }} }{ }}

TP:FP PPV TP:FP PPV TP:FP PPV TP:FP PPV

Trans_reg_C 103/75 1.4 32:57 0.36 59:1584 0.04 12:669 0.02 0:2 0.0

CH 169/100 1.7 16:17 0.48 125:2454 0.05 28:1828 0.02 0:2 0.0

7tm_1 366/247 1.5 36:84 0.30 263:15695 0.02 59:12787 0.005 0:10 0.0

SH3_1 81/46 1.8 24:17 0.59 46:516 0.08 11:206 0.05 0:0 –

Cadherin 215/90 2.4 40:8 0.83 132:1519 0.08 42:1857 0.02 1:2 0.33

Trypsin 617/210 2.9 115:75 0.61 383:11331 0.03 119:8899 0.01 0:7 0.0

Kunitz_BPTI 105/51 2.1 16:12 0.57 55:575 0.09 26:262 0.09 0:0 –

KH_1 79/55 1.4 19:15 0.56 50:707 0.07 10:438 0.02 0:1 0.0

RRM_1 119/68 1.8 45:36 0.56 63:1257 0.05 11:546 0.02 0:0 –

FKBP_C 199/91 2.2 66:51 0.56 103:2114 0.05 30:1288 0.02 0:3 0.0

Lectin_C 243/102 2.4 36:13 0.73 160:2401 0.06 39:1923 0.02 0:1 0.0

Thioredoxin 188/99 1.9 53:61 0.46 109:2677 0.04 26:1442 0.02 0:3 0.0

Response_reg 202/110 1.8 72:87 0.45 101:3182 0.03 28:1988 0.01 1:10 0.09

RNase_H 271/127 2.1 37:56 0.40 161:3700 0.04 72:3387 0.02 1:14 0.07

Ras 329/158 2.1 81:55 0.60 203:6472 0.03 44:4768 0.01 1:9 0.10

� OTUs connected to their parent nodes with branches shorter than the threshold value Tbt are removed from each Pfam full alignment, and the number of remaining
OTUs, n otu , is listed.
�� The rt is a threshold for a correlation coefficient corresponding to the E-value Et~0:001 (the P-value Pt~Et=n pairs) in the Student’s t-distribution of the degree of

freedom, df~(2n otu{3){2, where n pairs is the number of site pairs, and n otu is the number of OTUs.
} TP and FP are the numbers of true and false positives, which are the number of contact site pairs and the number of non-contact site pairs predicted as contacts in
each category, respectively.
}} PPV stands for a positive predictive value; i.e., PPV~TP=(TPzFP).
{The numbers of contacts and of sites, and their ratio are listed. Protein structures used to calculate contact residue pairs are listed in Table 1. Neighboring residue pairs
within 5 residues (Di{jDƒ5) along a peptide chain are excluded in the evaluation of prediction accuracy. Also both terminal sites are excluded from counting in this
table.
doi:10.1371/journal.pone.0054252.t002
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The filter [16] based on residue conservation degree is applied

for all DI-based predictions referred to in the present manuscript;

that is, sites where more than 95% of sequences have the

dominant residue except cysteine are excluded from contact

prediction; refer to Text S1 of [16]. Invariant sites are excluded

from contact prediction in the present method, too. In addition,

for the predictions listed in the fourth and the fifth columns, which

are based on the DI score or on the present coevolution score, the

filters that are based on a secondary structure prediction and on

cysteine-cysteine pairs for the DI-based contact prediction are

applied; refer to Text S1 of [16], In other words, contact residue

pairs that conflict with a predicted secondary structure are not

allowed, and multiple cysteine-cysteine contacts are not allowed

for cysteine residues.

The accuracy of three-dimensional structure prediction based

on inferred distance constraints will depend on false positive rate

and also fold type. The reliability of predicted coevolving site pairs

decreases with decreasing value of coevolution score, and

coevolving site pairs are selected in the decreasing order of

coevolution score. Therefore, prediction accuracy tends to

Table 3. Effectiveness of partial correlation coefficients on contact prediction accuracy.

Pfam ID� #contacts TP z FP} PPV(: TP/(TP+FP))

/#sites�� Cs
ij

}} Cs
ij

{ {{ rij
{

Trans_reg_C 103/75 27 0.222 %0:630 ^0:630 v0:667

1.4 37 0.189 %0:541 v0:595 ^0:595

CH 169/100 43 0.047 %0:395 v0:442 v0:535

1.7 57 0.053 %0:439 ^0:439 v0:526

7tm_1 366/247 93 0.011 %0:333 0:290 v0:355

1.5 124 0.008 %0:290 0:266 v0:315

SH3_1 81/46 22 0.227 %0:727 0:636 v0:682

1.8 29 0.241 %0:621 0:586 v0:655

Cadherin 215/90 55 0.291 %0:764 0:691 v0:836

2.4 73 0.274 %0:726 0:630 v0:767

Trypsin 617/210 159 0.396 %0:642 0:623 v0:673

2.9 212 0.344 %0:575 0:571 v0:618

Kunitz_BPTI 105/51 27 0.259 %0:593 0:556 v0:630

2.1 37 0.216 %0:514 0:459 v0:514

KH_1 79/55 22 0.455 %0:682 v0:773 0:727

1.4 30 0.367 %0:600 ^0:600 v0:667

RRM_1 119/68 33 0.273 %0:758 v0:788 v0:818

1.8 44 0.295 %0:795 0:750 v0:795

FKBP_C 199/91 50 0.220 %0:780 v0:880 0:840

2.2 66 0.197 %0:667 v0:773 0:727

Lectin_C 243/102 61 0.197 %0:656 0:623 v0:705

2.4 82 0.171 %0:585 0:537 v0:646

Thioredoxin 188/99 47 0.213 %0:660 v0:702 0:638

1.9 62 0.177 %0:581 v0:661 0:645

Response_reg 202/110 50 0.000 %0:680 0:600 v0:680

1.8 67 0.015 %0:657 0:522 v0:687

RNase_H 271/127 68 0.162 %0:456 v0:515 0:471

2.1 91 0.132 %0:407 v0:440 0:407

Ras 329/158 83 0.229 %0:699 ^0:699 v0:735

2.1 111 0.207 %0:640 ^0:640 v0:694

� The threshold Tbt to remove OTUs with short branches and the number n otu of remaining OTUs that are used for each protein here are listed in Table 2.
�� The numbers of contacts and of sites, and their ratio are listed. Protein structures used to calculate contact residue pairs are listed in Table 1. Neighboring residue
pairs within 5 residues (ji{jjƒ5) along a peptide chain are excluded in the evaluation of prediction accuracy. Also both terminal sites are excluded from counting in
this table.
} TP and FP are the numbers of true and false positives, and their sum is equal to the number of predicted contacts; only predictions for TPzFP^#contacts=4 and
#contacts=3 are listed.
}} Correlation coefficients of co-substitution are used as a score.
{ Partial correlation coefficients of co-substitution are used as a score.
{{ In Eq. 26 for an overall coevolution score, rx

ij~sgnCx
ij (jrs

ijC
x
ij j)1=2 with x=s is supposed instead of Eq. 25; in other words, correlation coefficients are used instead of

partial correlation coefficients for characteristic changes except co-substitution.
{The overall coevolution score defined by Eq. 26 is used.
doi:10.1371/journal.pone.0054252.t003
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Figure 2. Dependence of PPV on the number of characteristic variables used. Average PPVs are plotted against the number of
characteristic variables used to score co-substitutions between sites. The characteristic variables except a propensity listed in Table 4 are added in the
listed order to define an overall coevolution score; that is, (1) occurrence of amino acid substitution, (2) side-chain volume, (3) charge, (4) hydrogen-
bonding capability, (5) hydrophobicity, (6) b and (7) turn propensities, (8) aromatic interaction, (9) branched side-chain, (10) cross-link capability, and
(11) ionic side-chain. The solid and dotted lines correspond to predictions in which the ratio of the predicted to the true contacts is equal to 1=3 or
1=4, respectively. The plus marks and open circles show the averages of PPV over all 15 proteins and the values of

P
i TPi=(

P
i TPizFPi), where the

sum is taken over all 15 proteins.
doi:10.1371/journal.pone.0054252.g002

Table 4. Coevolution score (rx
ij ) based on each characteristic variable.

Characteristic rx
ij§rs

ij§rt
� rx

ijƒ{rs
ijƒ{rt

�

variable TP} FP} PPV{ TP} FP} PPV{

over all protein families

Substitution 687 642 0.52

Volume 18 20 0.47 73 10 0.88{

Charge 6 8 0.43 134 54 0.71{

Hydrogen bond 4 11 0.27 125 51 0.71{

Hydrophobicity 23 13 0.64{ 23 16 0.59{

a propensity 14 20 0.41 9 10 0.47

b propensity 24 17 0.59{ 30 14 0.68{

Turn propensity 21 18 0.54{ 17 15 0.53{

Aromatic interaction 30 10 0.75{ 16 14 0.53{

Branched side-chain 26 16 0.62{ 20 8 0.71{

Cross link 23 12 0.66{ 5 9 0.36

Ionic side-chain 27 15 0.64{ 14 18 0.44

� See Eqs. 24 and 25 for the definitions of rs
ij and rx

ij , respectively. The rt is a threshold for a correlation coefficient corresponding to the E-value Et~0:001 (the P-value

Pt~Et=n pairs) in the Student’s t-distribution of the degree of freedom, df~(2n otu{3){2, where n pairs is the number of site pairs, and n otu is the number of OTUs.
} TP and FP are the numbers of true and false contact residue pairs over all 15 protein families listed in Table 2; protein structures used to calculate contact residue pairs
are listed in Table 1. Neighboring residue pairs within 5 residues (ji{jjƒ5) along a peptide chain are excluded in the evaluation of prediction accuracy. Also both
terminal sites are excluded from counting in this table.
{ PPV stands for a positive predictive value; i.e., PPV~TP=(TPzFP).
{These PPVs are larger than the PPV for concurrent substitutions, i.e., 0:52 for rs .
doi:10.1371/journal.pone.0054252.t004
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decrease as the total number of predicted sites pairs increases; see

Fig. 3. It was reported [57,58] that the quality of predicted 3D

structure depends on the accuracy of inferred contacts more than

missing contacts. In Table 5, the results of predictions in which the

numbers of predicted contacts are equal to one fourth or one third

of the number of true contacts are listed for each protein family.

Although the number of contacts well scales with the chain length

[59], the ratio of the number of contacts to the chain length

somewhat varies depending on proteins as shown in Table 5. One

third of the total number of true contacts is equal to the sequence

length in the case of Trypsin, which has the largest number, 3.0, of

contacts per residue in Table 5, and equal to half of the sequence

length in the case of Trans_reg_c and 7tm_1, which have the

smallest number, 1.5, of contacts per residue. These ratios, 1=4
and 1=3, were chosen, because for the same set of protein domain

families, it was reported [16] that one needs about 0.5 to 0.75

Table 5. Accuracy of contact prediction based on the overall coevolution score (rij).

Pfam ID� #contacts TP z FP��� PPV}}{ PPV}}{{ MDPNT{{{ MDTNP{{{{

/#sites�� DI } rij DI } rij DI } rij DI } rij

Trans_reg_C 111/76 27 0.556 0.667 0.556 0.667 1.30 0.94 4.20 3.28

1.5 37 0.459 0.622 0.432 0.622 1.72 1.16 3.64 2.82

CH 172/101 43 0.535 0.558 0.488 0.465 2.23 2.55 4.59 4.37

1.7 57 0.456 0.561 0.439 0.491 2.12 2.44 3.70 3.30

7tm_1 372/248 93 0.290 0.409 0.194 0.344 7.43 5.31 12.68 7.71

1.5 124 0.282 0.355 0.169 0.306 7.30 5.33 12.18 6.40

SH3_1 89/48 22 0.636 0.682 0.636 0.682 0.83 0.51 1.69 2.34

1.9 29 0.552 0.655 0.552 0.655 1.15 0.62 1.56 1.51

Cadherin 220/91 55 0.836 0.836 0.818 0.836 0.59 0.25 1.98 1.98

2.4 73 0.753 0.767 0.753 0.767 0.64 0.45 1.60 1.60

Trypsin 636/212 159 0.642 0.692 0.591 0.673 1.75 1.20 3.26 3.10

3.0 212 0.580 0.627 0.533 0.613 2.26 1.65 2.83 1.94

Kunitz_BPTI 111/53 27 0.593 0.630 0.444 0.593 1.40 1.18 2.31 2.08

2.1 37 0.649 0.486 0.541 0.486 1.13 1.46 1.86 1.94

KH_1 90/57 22 0.545 0.773 0.500 0.773 0.99 0.51 2.41 3.29

1.6 30 0.533 0.733 0.533 0.700 1.07 0.56 2.16 3.05

RRM_1 133/70 33 0.788 0.818 0.758 0.818 0.52 0.55 2.86 2.36

1.9 44 0.750 0.795 0.705 0.795 0.83 0.49 2.49 1.84

FKBP_C 200/92 50 0.760 0.840 0.760 0.840 0.53 0.69 1.97 1.85

2.2 66 0.712 0.727 0.697 0.727 0.94 0.85 1.66 1.51

Lectin_C 246/103 61 0.803 0.721 0.770 0.705 0.80 0.94 2.93 2.67

2.4 82 0.683 0.659 0.671 0.646 1.19 1.17 2.54 2.32

Thioredoxin 188/99 47 0.532 0.681 0.532 0.638 0.98 0.85 3.43 2.33

1.9 62 0.597 0.661 0.565 0.645 0.94 0.91 3.16 1.86

Response_reg 202/110 50 0.680 0.700 0.660 0.680 0.86 0.88 3.39 3.06

1.8 67 0.657 0.701 0.642 0.687 1.01 0.92 2.54 2.29

RNase_H 273/128 68 0.588 0.471 0.559 0.471 1.51 1.53 3.61 5.44

2.1 91 0.571 0.407 0.549 0.407 1.55 2.19 3.27 3.07

Ras 335/159 83 0.699 0.699 0.699 0.699 0.94 1.05 2.98 3.68

2.1 111 0.640 0.694 0.631 0.685 1.12 1.45 2.40 2.51

� The threshold Tbt to remove OTUs with short branches and the number n otu of remaining OTUs that are used for each protein here are listed in Table 2.
�� The numbers of contacts and of sites, and their ratio are listed. Protein structures used to calculate contact residue pairs are listed in Table 1. Neighboring residue
pairs within 5 residues (ji{jjƒ5) along a peptide chain are excluded in the evaluation of prediction accuracy.
��� TP and FP are the numbers of true and false positives, and their sum is equal to the number of predicted contacts; only predictions for TPzFP~#contacts=4 and
#contacts=3 are listed.
} DI means the prediction based on the direct information (DI) score published in [16].
}} PPV stands for a positive predictive value; i.e., PPV~TP=(TPzFP). Better values are typed in a bold font.
{ MDPNT stands for the mean Euclidean distance from predicted site pairs to the nearest true contact in the 2-dimensional sequence-position space [16]. Better values
are typed in a bold font.
{{ MDTNP stands for the mean Euclidean distance from every true contact to the nearest predicted site pair in the 2-dimensional sequence-position space [16]. Better
values are typed in a bold font.
{Filters that are based on a secondary structure prediction and cysteine pairs, and were applied to DI in [16], are applied to both DI and rij . For DI, an additional filter

[16] based on residue conservation is also used.
{{Only the conservation filter is used for DI but no filter is used for rij .

doi:10.1371/journal.pone.0054252.t005
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predicted distance constraints per residue, which correspond to

about 0.25 to 0.35 of the total number of contacts, to achieve

reasonable three-dimensional structure prediction. This result is

consistent with other reports in which three-dimensional structures

were reconstructed [57] from predicted contact maps or essential

contacts determining protein structure were computed [60].

In Fig. 4 and Fig. S2, coevolving site pairs are shown in the

lower half of each triangular map in comparison with residue pairs

whose minimum atomic distances are less than 5 Å. For

comparison, contact residue pairs predicted with high DI scores

[16] are also shown in the upper half of each triangular map. Gray

filled-squares, red and indigo filled-circles indicate such residue-

residue proximities, true and false positives in contact prediction,

respectively. It should be noted here that residue pairs separated

by 5 or fewer positions (2ƒji{jjƒ5) in a sequence may be shown

with the gray filled-squares but are excluded as well as nearest

neighbors in both the prediction of coevolving site pairs and the

contact prediction with the DI score. The total number of

predicted site pairs is equal to one third of the total number of true

contacts in each protein structure.

In Table 5, which method is better in the accuracy of contact

prediction is indicated by a bold font. The PPVs of the present

method are comparable to those of the DI method for most of the

proteins irrespective of the use of the filters based on predicted

secondary structures and on cysteine-cysteine pairs. The use of

those filters improves the PPVs of the DI and the present methods

at most by about 10–15% for 7tm_1 and Kunitz_BPTI and by

about 10% for CH, respectively. However, for most of other

proteins, the improvements of the PPVs of the DI and the present

methods are less than 5%, although this fact does not necessarily

indicate that both the predictions are almost compatible with the

secondary structure predictions.

In Fig. 3, the PPVs of the present method and the DI method

are drawn by solid and dotted lines as a function of the ratio of

predicted to true contacts, respectively. Also, the values of

MDPNT and MDTNP are compared between the present and

Figure 3. Dependence of PPV on the number of predicted contacts. The dependences of the positive predictive values on the total number
of predicted contacts are shown for each protein fold of a, b, azb, and a=b. The solid and dotted lines show the PPVs of the present method and the
method based on the DI score [16], respectively. Only the conservation filter [16] is applied for the DI score. The total number of predicted site pairs is
shown in the scale of the ratio of the number of predicted site pairs to the number of true contacts. The total number of predicted site pairs takes
every 10 from 10 to a sequence length; also PPVs for the numbers of predicted site pairs equal to one fourth or one third of true contacts are plotted.
The filled marks indicate the points corresponding to the number of predicted site pairs equal to one third of the number of true contacts. The
number of sequences used here for each protein family is one listed in Table 1.
doi:10.1371/journal.pone.0054252.g003
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DI methods and also between the protein families in Figs. S3 and

S4, respectively. The good performance of the present method is

shown over a wide range of predicted site pairs.

Dependence of the Prediction Accuracy on the Number
of Predicted Site Pairs

The dependences of the accuracy of predicted contacts on their

number are shown in Fig. 3 for PPV, in Fig. S3 for MDPNT, and

in Fig. S4 for MDTNP. The total number of predicted site pairs

takes every 10 from 10 to a sequence length; also accuracies for the

numbers of predicted contacts equal to one third or one fourth of

Figure 4. Coevolving site pairs versus DI residue pairs. Residue pairs whose minimum atomic distances are shorter than 5 Å in a protein
structure and coevolving site pairs predicted are shown by gray filled-squares and by red or indigo filled-circles in the lower-left half of each figure,
respectively. For comparison, such residue-residue proximities and predicted contact residue pairs with high DI scores in [16] are also shown by gray
filled-squares and by red or indigo filled-circles in the upper-right half of each figure, respectively; only the conservation filter is applied but the filters
based on a secondary structure prediction and for cysteine pairs are not applied to the DI scores. Red and indigo filled-circles correspond to true and
false contact residue pairs, respectively. Residue pairs separated by five or fewer positions (2ƒji{jjƒ5) in a sequence may be shown with the gray
filled-squares but are excluded as well as nearest neighbors in both the predictions. The total numbers of coevolving site pairs and DI residue pairs
plotted for each protein are both equal to one third of true contacts (TPzFP~#contacts=3). The PPVs of both the methods for each protein are
listed in Table 5.
doi:10.1371/journal.pone.0054252.g004
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true contacts are plotted. Here, in order to compare prediction

accuracies between protein families, the total number of predicted

contacts is shown in the scale of the ratio of predicted to true

contacts. It is clearly shown that there is an overall trend for PPV

to decrease monotonically as increasing number of predicted site

pairs. However, exceptional increases of PPV are also observed

with increasing number of site pairs predicted. In the protein

family of CH, PPV changes from 0.43 to 0.5 as the number of

predicted site pairs increases from 30 to 50. Because except the

case of CH such abnormal increases of PPV often occur in the

range of small numbers of predicted site pairs, i.e., from 10 to 30,

they may be caused by statistical fluctuations.

It is shown in Table 5 and Fig. S3 that the relationships of

MDPNT with the ratio of predicted to true contacts are almost

inverse of that of PPV, indicating that the MDPNT and PPV are

two different measures of the quality of predicted site pairs but

result in similar evaluations. On the other hand, MDTNP, which

measures the spread of predicted site pairs over true contacts,

measures the qualities of predicted contacts differently from PPV

and MDPNT. It tends to decrease monotonically as increasing

number of predicted site pairs irrespective of the quality of

prediction accuracy, and therefore it is not appropriate to measure

the dependence of prediction accuracy on the total number of

predicted site pairs.

Dependence of the Prediction Accuracy on Protein Fold
Types

As expected, prediction accuracy is different between proteins.

However, it is unexpected that prediction accuracy may be slightly

lower for a proteins, at least for the present three proteins, than for

b proteins; see Fig. 3. Especially the prediction accuracy for the

membrane protein 7tm_1 is remarkably lower than other two a
proteins. This feature is observed in both the present and the DI

methods. Thus, this feature may originate in differences between

structural constraints in a-a packing and in the packings of b
strands and b sheets, although the low prediction accuracy for the

membrane protein 7tm_1 would result from a-a packing peculiar

to membrane proteins. Here it should be noted that the a proteins

have less contacts per residue than the b proteins; see Table 5. A

definitive answer must be postponed until more a proteins are

analyzed.

Dependence of the Prediction Accuracy on the Diversity
and the Number of Sequences Used

Multiple subsets of a full alignment are generated by using

different values of threshold Tbt for branch length to remove

OTUs connected to their parent nodes with short branches in the

Pfam reference tree. In Fig. 5, S5, and S6, the PPVs, MDPNTs,

and MDTNPs calculated from each data are plotted against the

number of sequences used, respectively. Because the threshold

values used to generate each dataset should also affect the

accuracy of prediction, they are written near each data point. A

general tendency is of course that the PPV and MDPNT are

improved by using more sequences. However, the number of

sequences and the threshold Tbt where accuracy improvement is

saturated are very different between protein families. For example,

in the case of SH3_1, no significant improvement in the PPV and

MDPNT is observed in a wide range of 0:2§Tbt§0:001, even if

the number of sequences increases from 1500 to 4000. In

RNase_H, the PPV and MDPNT are almost constant in the

range of 0:05§Tbt§0:001 and 2120ƒn otuƒ7048. In Respon-

se_reg, after the PPV reaches the highest value 0.73 at Tbt~0:6
and n otu~3344, it even decreases to 0.69 in 3344ƒn otuƒ7613,

although its decrement is not large and the MDPNT is almost

constant in this region. Multiple sequence alignments may include

many sites where significant fraction of sequences have deletions,

reducing effectively the number of sequences; for example, in the

case of RNase_H. However, it may be worth increasing the

number of sequences until Tbt&0:01; the threshold will be

Tbt^2=#sites, which is a condition for one co-substitution (two

substitutions) to occur in a sequence at the branch. Here

calculations have been carried out until n otu&7000 or

Tbt&0:01. Sequences more than a thousand are necessary to get

a reliable prediction for proteins consisting of a few hundred

residues.

Some data points in Fig. 5, S6, and S5 correspond to datasets

generated by using the same value of threshold but by removing

different OTUs. PPV often differs between such datasets, although

the difference of PPV ranges from a few percent to 8 percent; see

the PPVs for Tbt~0:2 of Trans_ref_C, Tbt~0:02 of CH, and

Tbt~0:5 of Cadherin in Fig. 5. This fact indicates that the

distribution of sequences in a sequence space significantly affects

prediction accuracy. Also, it is indicated that some site pairs

predicted are still based on rare events of concurrent substitutions

in a tree.

Discussion

Partial Correlation Coefficients Effectively Extract Direct
Correlations between Sites

The present method is based on co-substitutions between sites.

As shown in Table 2–3, Pearson’s correlation coefficients of

substitution probabilities between sites over branches of a

phylogenetic tree reflect phylogenetic correlations, which originate

from a fact that at any site substitution probability in a branch is

an increasing function of branch length. This type of phylogenetic

correlations are specific to substitution probabilities along

branches between sites, but do not exit between other character-

istic variables used here. In order to detect concurrent substitu-

tions, such phylogenetic correlations must be removed. Substitu-

tion probabilities in each branch at sites may be corrected by using

the branch length. However, the estimation of branch length is

model-dependent. Here, instead substitution probabilities in each

branch at a given pair of sites were corrected by removing a linear

multiple dependence on substitution vectors at other sites, and

then their correlation coefficients, which are named as partial

correlation coefficients, were calculated. This correction is

justified, because the expected value of substitution probability

in a branch at a site is approximately proportional to the average

of substitution probabilities on the branch over sites. In addition,

this correction on feature vectors can remove indirect correlations

through other sites, although only linear multiple dependences on

feature vectors at other sites can be removed. It was shown in

Table 3 that the partial correlation coefficients of substitution

probabilities between sites over branches can well detect co-

substitutions, and indirect correlations of any feature vector

through other sites can be reduced as well.

Excellent Prediction Accuracy of Residue-residue
Proximity

Here, with respect to the prediction accuracy of contact residue

pairs the present method has been shown to be comparable to the

DI method [15,16] that seems to be one of the best methods, in a

range of the total number of predicted coevolving site pairs from

one fourth of sequence length to sequence length, for 15 protein

families of the four major SCOP fold classes and of short to long

sequence. Although prediction accuracy is insensitive to sequence

Prediction of Contact Residue Pairs

PLOS ONE | www.plosone.org 15 January 2013 | Volume 8 | Issue 1 | e54252



length, it is slightly lower for a proteins than for b proteins,

reflecting differences between a–a and b–b packings; especially

prediction accuracy for a membrane protein 7tm_1 is significantly

lower than for other proteins. Overall, the prediction accuracy of

the present method is comparable to that by the joint distribution

of amino acid types between sites in a multiple sequence

alignment, which was shown to be sufficient to achieve reasonable

three-dimensional structure prediction [16]; for a membrane

protein 7tm_1, the present method showed better prediction

accuracy.

Prediction accuracy of contact residue pairs is different between

the protein families. Possible reasons for false positives include (1)

statistical noise due to an insufficient number of sequences,

insufficient diversity of sequences, and incorrect matches in a

multiple sequence alignment and an incorrect phylogenetic tree,

(2) structural and functional constraints from other residues, which

are not taken into account in the calculation of partial correlation

coefficients from a correlation matrix, within a protein or even

through other molecules involved in a molecular complex such as

oligomerization, protein-substrate, and protein-DNA, (3) structur-

al variance in homologous proteins, although each Pfam family is

assumed to be iso-structural. Especially, for proteins whose

functional states are homomeric, inter-residue and intra-residue

contacts must be discriminated.

Of course prediction accuracy depends on the size of sequences

used and their diversity. A general trend is that prediction

accuracy becomes better as increasing number of sequences used,

although the diversity of sequences in protein families is more

effective than the number of sequences itself. Also, the presence of

many deletions in sequences reduces the value of including those

sequences. The present subset (Tbt~0:01) of the full alignment of

RNase_H family consists of more than 4700 sequences, but their

multiple sequence alignment includes many sites where the

significant fraction of sequences have deletions.

Here, branch lengths of OTUs (sequences) from their parent

nodes in a phylogenetic tree are used to get less sequences but as

diverse sequences as possible. The maximum number of sequences

to be tried for the present method will correspond to a dataset

Figure 5. Dependence of PPV on the number of sequences used. The positive predictive values are plotted against the total number of
homologous sequences used for each prediction. The total numbers of coevolving site pairs predicted for each protein are equal to one third of true
contacts. The filled marks indicate the points corresponding to the number of used sequences listed for each protein family in Table 1. The values
written near each data point indicate the threshold value Tbt; OTUs connected to their parent nodes with branches shorter than this threshold value
are removed in the Pfam reference tree of the Pfam full sequences used for each prediction. Some data points correspond to datasets generated by
using the same value of the threshold but by removing different OTUs.
doi:10.1371/journal.pone.0054252.g005

Prediction of Contact Residue Pairs

PLOS ONE | www.plosone.org 16 January 2013 | Volume 8 | Issue 1 | e54252



generated by Tbt^2=#sites, which is a condition for one co-

substitution (two substitutions) to occur in a sequence at the

branch. However, the cost-effective number of sequences to be

used is different between protein families, indicating that the

distribution of sequences in a sequence space significantly affects

prediction accuracy. At this stage, we could not find a general rule

for the cost-effective number of sequences to be used.

In order to get useful numbers (w35%) of PPV, more than 1000
sequences whose branch lengths from their parent nodes are

longer than 0.01 amino acid substitutions per site would be

needed. This requirement seems to be similar to that for the

maximum entropy model [16], in which the order of one thousand

sequences are required to reduce statistical noises including

phylogenetic bias in frequency counts.

Dependences on the Accuracies of a Substitution Model,
Tree Topology, and a Sequence Alignment

In the present evaluation of characteristic variables at each site

in each branch, a mechanistic codon model with equal codon

usage is used because even for amino acid sequences it yields

smaller AIC values than any amino acid substitution model does.

However, amino acid substitution models may be used instead,

because smaller AIC values do not necessarily mean that the

detection of coevolving positions is improved; substitution

mapping on phylogenies was shown to be robust to the input

model [47].

In order to examine the dependence of prediction accuracy on

tree topology, phylogenetic trees optimized by an approximate

ML method, FastTree2 with the default option (JTT and CAT)

[61], for datasets of Tbt~0:01 or full alignments have been used as

tree topologies instead of the Pfam reference trees for the protein

alignments whose Tbt values are listed in Table 2. Also,

phylogenetic trees optimized by a maximum-likelihood method

ExaML [62] with the default option (JTT and PSR) following the

FastTree2 have been used for CH, SH3_1, Kunitz_BPTI, and

RNase_H. The accuracies of predictions using those optimized

trees are compared with those using the Pfam reference trees in

Table S1. This table also shows the log-likelihood value of a tree

with branch lengths optimized in a codon model for each tree

topology. The prediction accuracy of contact site pairs were not

significantly improved in the optimized tree topologies; the PPV

could be improved at most by a few percent but could be even

worse. The variation of the PPV values was almost in the range of

those between datasets generated by using the same value of

threshold (Tbt) but by removing different OTUs. These results

may indicates that the effectiveness of optimization of tree

topology is limited due to the accuracy of a sequence alignment.

This indication is consistent with a report [63] that the likelihood

maximization of tree topology by the RAxML [62] was not

effective in comparison with the FastTree [36] in estimating

correct topologies with less accurate DNA alignments, which

might be estimated on very large datasets.

An accurate multiple sequence alignment will be critical to

increase prediction accuracy, because phylogenetic inference for

co-substitutions as well as tree topology is based on alignments. In

the present calculations, sites that correspond to deletions in a

target protein structure are excluded in the optimization of tree

branches and in the calculation of partial correlation coefficients.

The calculation of partial correlation coefficients by including

those sites has been attempted for the Kunitz_BPTI and RNase_H

domain families. No improvement was obtained at least for these

protein families.

Significance of Compensatory Substitutions in Protein
Evolution

It has been shown that site pairs giving the significant values of

partial correlation coefficients for substitutions, which concurrently

occurred in branches of a phylogenetic tree and would be mostly

compensatory substitutions, well correspond to contact site pairs in

protein 3D structures. In compensatory substitutions, the fitness of

first mutations must be negative, and successive mutations must

occur to compensate the negative effect of the first mutation. A

time scale in which compensatory mutations successively occur is

much shorter than the time scale of protein evolution that is the

order of fixation time for neutral mutations, otherwise negative

mutants will be eliminated from a gene pool by selection. Thus,

negative substitutions and their compensatory substitutions are

expected to be observed as concurrent substitutions in the same

branch of a tree. If substitutions are completely neutral, there will

be no correlation in time when substitutions occur. Thus, a fact

that contact site pairs can be well predicted by the present method

indicates that compensatory substitutions are significant in protein

evolution. Significance of compensatory substitutions was also

indicated by a fact that likelihoods of phylogenetic trees can be

significantly improved by taking account of codon substitutions

with multiple nucleotide changes [37,38].

A Method Based on Co-substitutions between Sites
Rather than the Joint Distributions of Residue Types

So far remarkable improvements in the accuracy of contact

prediction were all achieved by extracting essential correlations of

amino acid types between residue positions from multiple

sequence alignments [11,15,16,32]. Here, almost comparable

accuracy of contact prediction has been achieved by evaluating

direct correlations of concurrent and compensatory substitutions

between sites. The present method cannot be applied to the cases

in which all substitutions are nearly neutral. In such a case, in

which pairwise interactions between sites are not significant and

multi-body interactions among sites are important to stabilize a

conformation, structural and functional constraints from closely-

located sites in protein 3D structures may be reflected only in the

joint distribution of amino acid types between the sites.

Residue-residue interactions maintaining secondary structures

appear to be more easily detected by the joint distribution of

amino acid types between the sites than concurrent substitutions.

In general, the present method less detects secondary structure

interactions between neighboring sites along a sequence than the

other. Marks et al. [16] reported that residue pairs separated by

four or five positions in a sequence often have high DI scores

without being in close physical proximity in the folded protein.

Even for site pairs separated by more than five positions, their

method based on the joint distribution of amino acid types

detected more dependences in a helical regions than the present

method; see 7tm_1 in Table 5 and in Fig. 4.

From a such viewpoint, methods of extracting direct correla-

tions of amino acid types between sites may be better for extracting

direct dependences between sites than those of detecting

compensatory substitutions in a tree. However, interactions

between closely-located sites do not necessarily result in distinct

correlations of amino acid types between the sites. Residue-residue

interactions that are less specific to amino acid type are such

interactions. For example, hydrophobic interactions are relatively

non-specific, but significantly contribute to residue-residue inter-

actions inside protein structures. In the case of membrane

proteins, most of amino acids embedded in membrane are

hydrophobic. Even in the case that residue-residue interactions are
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too non-specific to result in distinct correlations of amino acid

types between sites, physico-chemical changes due to substitutions

may require compensatory substitutions, and therefore the

interactions may be identified by detecting compensatory substi-

tutions. Membrane proteins may be this case; see 7tm_1 in Table

5 and in Fig. 3. Structural analyses of membrane proteins,

especially the determinations of protein coordinates in transmem-

brane regions, are difficult in comparison of globular proteins. The

present method for contact prediction could facilitate the structure

determination of membrane proteins.

The DI method based on the joint distributions of amino acid

types may be simpler and faster than the present method based on

co-substitutions in a phylogenetic tree. However, the joint

distributions of amino acid types calculated from a multiple

sequence alignment include more or less phylogenetic bias, but

there is no such a bias in the present method. Thus, the both types

of methods are complementary to each other.

A Method Based on a Gaussian Graphical Model Rather
than a Bayesian Graphical Model

A Bayesian graphical model was applied to disentangling direct

from indirect dependencies between residue positions in multiple

sequence alignments of proteins [11]. In the Bayesian graphical

model, an acyclic directed graph is assumed for site dependence,

although interactions between sites in protein structures act on

each other. A causal relationship between substitutions is of course

directional. However, substitutions at a site affect on closely-

located sites, and also the site is affected by substitutions at those

surrounding sites. Thus, dependence between sites should be

assumed to be bidirectional or undirectional. Unlike Bayesian

graphical models, an undirected graph is assumed in a Gaussian

graphical model [40], in which a null edge between two nodes

encodes that random variables assigned to the nodes are

conditionally independent of each other given the values of

random variables assigned to other nodes. Assuming that a joint

probability density distribution of random variables is a multivar-

iate Gaussian distribution, two random variables are conditionally

independent given the values of other random variables if and only

if a partial correlation coefficient between the two random

variables is equal to zero. Thus, the present model based on

partial correlation coefficients can be regarded as a Gaussian

graphical model in which an undirected graph is assumed for

dependences between sites and a feature vector Di is assigned to

node i as the observed values of a random variable. This is one of

essential differences between the present model and the Bayesian

models [11,14,29], although there is another essential difference

that the joint distributions of residues at sites were analyzed in

[11,14].

Contribution to Protein Structure Prediction
Determination of protein structure is essential to understand

protein function. However, despite significant effort to explore

unknown folds in the protein structural space, protein structures

determined by experiment are far less than known protein families.

Only about 36% of the Pfam manually curated families (Pfam-A,

13672 families) include at least one member whose structure is

known. In the case of domains of unknown function (DUFs),

which are rapidly growing in the Pfam-A, some 26% of DUFs

have at least one structurally determined protein within a family or

within a clan [35]. On the other hand, the Pfam automatically

generated database (Pfam-B), which may be regarded as an upper

limit for the total number of protein families, amounts to 460125

families. The number and also the size of protein families will

further grow as genome/metagenome sequencing projects proceed

with next-generation sequencing technologies. Thus, accurate de

novo prediction of three-dimensional structure is desirable to catch

up with the high growing speed of protein families with unknown

folds.

The vast conformational space of protein makes it difficult to

determine protein structure by ab initio folding of protein. Methods

that use fragment libraries [64,65] or other strategies with

statistical potentials [66] to efficiently search conformational space

have been quite successful in de novo prediction of protein structure,

but their conformational samplings are not efficient enough to fold

longer proteins than at most 100 residues.

On the other hand, the accuracy of the present contact

prediction is insensitive to sequence length; see Table 5. Also, the

increase of protein family size is beneficial to the contact

prediction from evolutionary sequence variation. Thus, contact

residue pairs predicted from a statistical analysis of a multiple

sequence alignment and/or from concurrent and compensatory

substitutions are useful as distance constraints in structure

prediction [67]. It is shown [16,32] that inferred residue-residue

proximities together with a predicted secondary structure provide

sufficient information to predict a protein fold without the use of

known three-dimensional structures.

The present contact prediction based on coevolving site pairs is

comparable to the method [16] based on the joint distribution of

amino acids in a multiple sequence alignment, but better for a

membrane protein (7tm_1) although the prediction accuracy is not

high. Thus, the present method is especially useful for the

determination of the arrangement of trans-membrane segments in

membrane proteins whose structure determination by experiment

is relatively difficult.

Supporting Information

Figure S1 Dependence of PPV on the number of
characteristic variables used. For each protein in a, b,

azb, and a=b folds, PPVs are plotted against the number of

characteristic variables used to score co-substitutions between sites.

The characteristic variables except a propensity listed in Table 4

are added in the listed order to define an overall coevolution score;

that is, (1) occurrence of amino acid substitution, (2) side-chain

volume, (3) charge, (4) hydrogen-bonding capability, (5) hydro-

phobicity, (6) b and (7) turn propensities, (8) aromatic interaction,

(9) branched side-chain, (10) cross-link capability, and (11) ionic

side-chain. The solid and dotted lines correspond to predictions in

which the ratio of the predicted to the true contacts is equal to 1=3
or 1=4, respectively.

(PDF)

Figure S2 Coevolving site pairs versus DI residue pairs.
Residue pairs whose minimum atomic distances are shorter than 5

Å in a protein structure and coevolving site pairs predicted are

shown by gray filled-squares and by red or indigo filled-circles in

the lower-left half of each figure, respectively. For comparison,

such residue-residue proximities and predicted contact residue

pairs with high DI scores in [16] are shown by gray filled-squares

and by red or indigo filled-circles in the upper-right half of each

figure, respectively; only the conservation filter is applied but the

filters based on a secondary structure prediction and for cysteine

pairs are not applied to the DI scores. Red and indigo filled-circles

correspond to true and false contact residue pairs, respectively.

Residue pairs separated by five or fewer positions (2ƒji{jjƒ5) in

a sequence may be shown with the gray filled-squares but are

excluded as well as nearest neighbors in both the predictions. The

total numbers of coevolving site pairs and DI residue pairs plotted

for each protein are both equal to one third of true contacts
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(TPzFP~#contacts=3). The PPVs of both the methods for each

protein are listed in Table 5.

(PDF)

Figure S3 Dependence of MDPNT on the number of
predicted contacts. The dependences of the mean Euclidean

distance from predicted site pairs to the nearest true contact in the

2-dimensional sequence-position space on the total number of

predicted contacts are shown for each protein fold of a, b, azb,

and a=b. The solid and dotted lines show the MDPNTs of the

present method and the method based on the DI score [16],

respectively. Only the conservation filter [16] is applied for the DI

score. The total number of predicted contacts is shown in the scale

of the ratio of the number of predicted contacts to the number of

true contacts. The total number of predicted site pairs takes every

10 from 10 to a sequence length; also MDPNTs for the numbers of

predicted contacts equal to one fourth or one third of true contacts

are plotted. The filled marks indicate the points corresponding to

the number of predicted site pairs equal to one third of the number

of true contacts. The number of sequences used here for each

protein family is one listed in Table 1.

(PDF)

Figure S4 Dependence of MDTNP on the number of
predicted contacts. The dependences of the mean Euclidean

distance from every true contact to the nearest predicted site pair

in the 2-dimensional sequence-position space on the total number

of predicted contacts are shown for each protein fold of a, b, azb,

and a=b. The solid and dotted lines show the MDTNPs of the

present method and the method based on the DI score [16],

respectively. Only the conservation filter [16] is applied for the DI

score. The total number of predicted site pairs is shown in the scale

of the ratio of the number of predicted site pairs to the number of

true contacts. The total number of predicted site pairs takes every

10 from 10 to a sequence length; also MDTNPs for the numbers of

predicted site pairs equal to one fourth or one third of true

contacts are plotted. The filled marks indicate the points

corresponding to the number of predicted contacts equal to one

third of the number of true contacts. The number of sequences

used here for each protein family is one listed in Table 1.

(PDF)

Figure S5 Dependence of MDPNT on the number of
sequences used. The mean Euclidean distance from every

predicted site pair to the nearest true contact in the 2-dimensional

sequence-position space is plotted against the total number of

homologous sequences used for each prediction. The total

numbers of coevolving site pairs predicted for each protein are

equal to one third of true contacts. The filled marks indicate the

points corresponding to the number of used sequences listed for

each protein family in Table 1. The values written near each data

point indicate the threshold value Tbt; OTUs connected to their

parent nodes with branches shorter than this threshold value are

removed in the Pfam reference tree of the Pfam full sequences used

for each prediction. Some data points correspond to datasets

generated by using the same value of the threshold but by

removing different OTUs.

(PDF)

Figure S6 Dependence of MDTNP on the number of
sequences used. The mean Euclidean distance from every true

contact to the nearest predicted site pair in the 2-dimensional

sequence-position space is plotted against the total number of

homologous sequences used for each prediction. The total

numbers of coevolving site pairs predicted for each protein are

equal to one third of true contacts. The filled marks indicate the

points corresponding to the number of used sequences listed for

each protein family in Table 1. The values written near each data

point indicate the threshold value Tbt; OTUs connected to their

parent nodes with branches shorter than this threshold value are

removed in the Pfam reference tree of the Pfam full sequences used

for each prediction. Some data points correspond to datasets

generated by using the same value of the threshold but by

removing different OTUs.

(PDF)

Table S1 Dependence of contact prediction accuracies on

phylogenetic trees.

(PDF)

Data S1 Coevolution scores, overall coevolution score
and rank of each site pair in each protein.
(BZ2)
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and threading. Jô Mol Biol 256: 623–644.

52. Chou PY, Fasman FD (1978) Prediction of the secondary structure of proteins

from their amino acid sequence. Jô Adv Enzymol 47: 45–148.
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