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Abstract

The inverse Potts problem to infer a Boltzmann distribution for homologous protein sequences from their
single-site and pairwise amino acid frequencies recently attracts a great deal of attention in the studies of
protein structure and evolution. We study regularization and learning methods and how to tune
regularization parameters to correctly infer interactions in Boltzmann machine learning. Using L2
regularization for fields, group L1 for couplings is shown to be very effective for sparse couplings in
comparison with L2 and L1. Two regularization parameters are tuned to yield equal values for both the
sample and ensemble averages of evolutionary energy. Both the averages smoothly change, but their
learning profiles are very different between learning (gradient-descent) methods, Adam, NAG, and
modified PROP. The Adam method is modified to make an increment vector proportional to the gradient
vector for sparse couplings and to use a soft-thresholding function for group L1. It is shown by first
inferring interactions from protein sequences and then from Monte Carlo samples that the fields and
couplings can be well recovered, but that recovering the pairwise correlations in the resolution of a total
energy is harder for the natural proteins than for the protein-like sequences. Selective temperature for
folding/structural constrains in protein evolution is also estimated.
Publications:

1 IEEE/ACM IEEE/ACM Trans. Comput. Biol. Bioinform. 2020; DOI:10.1109/TCBB.2020.2993232 (arXiv:1909.05006)

2 J. Theor. Biol. 433, 21-38, 2017; DOI:10.1016/j.jtbi.2017.08.018 (arXiv:1612.09379)

https://doi.org/10.1109/TCBB.2020.2993232
https://arxiv.org/abs/1909.05006
https://doi.org/10.1016/j.jtbi.2017.08.018
https://arxiv.org/abs/1612.09379


1. Background

The probability distribution (P(σ)) of homologous sequences (σ) in a protein family can be well
approximated by a Boltzmann distribution (Figliuzzi et al., 2018):

P(σ) ∝ exp(−ψN(σ)) , ψN(σ) ≡ −(
L∑
i

(hi(σi) +
∑
j>i

Jij(σi , σj))) (1)

where σi ∈ {amino acids, deletion}, hi is one-body at site i, and Jij is two-body interaction between sites i
and j. The estimation of h and J from homologous sequences is not only useful for predicting residue
contacts in protien structure but for estimating folding free energy and evolutionary fitness of proteins.

A protein folding theory based on the random energy model (REM) indicates:

P(σ) ∝ Pmut(σ) exp(
−∆GND(σ,T)

kBTs
) ∝ exp(

−GN(σ)

kBTs
) if f(σ) = constant (2)

where ∆GND ≡ GN − GD , GN and GD are the free energies of native and denatured state, Ts is the effective
temperature representing the strength of selection pressure (Shakhnovich et al., 1993).
We prove that if a mutational process in protein evolution is a reversible Markov process, the equilibrium
ensemble of genes for diploid will obey a Boltzmann distribution (Miyazawa, 2017):

P(σ) ∝ Pmut(σ) exp(4Nem(1 − 1/(2N))) (3)

where Ne and N are effective and actual population sizes, and m is the Malthusian fitness of a gene.



2. Purposes of the present study

In the Boltzman machine, which is slower but can estimate h and J more acurately than the mean field and
pseudo-likelihood approximations, the cross entropy S(φ) including a regularization R(φ) is minimized by a gradient
descent method;

S(φ) ≡
−1
W

∑
σN

wσN log P(σN |φ) + R where hi(ak ) = φi −
∑
j(,i)

∑
l

φij(ak , al)Pj(al) , Jij(ak , al) = φij(ak , al) (4)

where Pj(al) ≡
∑
σN

wσNδσNj ,al /W , W ≡
∑
σN

wσN , and ak ∈ {amino acids, deletion}. The equilibrium distribution
P(σN |φ) is generated by the MCMC method. For protein sequences:

Interactions Jij should be sparse and significant for closely-located, interacting residue pairs in a 3D structure.
The random energy model (REM) for proten folding indicates that the sample mean of ψN(σN) over homologous
sequences is equal to the ensemble average over the Boltzmann distribution, which may be evaluated by
approximating the distribution of ψN(σ) of random sequences as a Gaussian distribution, ψ̄ − δψ2, where the ψ̄
and δψ2 are the mean and variance of ψN(σ).

In order to correctly infer interactions, we study
1 which regularizer is better, L2-L2, L2-L1, and L2-GL1, which denote L2 for hi(a) and L2, L1, and group L1 for

Jij(a, b), respectively; soft-thresholding functions are used for L1 and group L1.
2 which gradient descent method is appropriate, Adam, NAG, modified RPROP, and modified Adam invented here;

in all except the first one an increment vector is proportional to a gradient vector.
3 how to tune regularization parameters, λ1 and λ2; both the sample and ensemble averages of evolutionary

energy ψN should be equal to each other.



3. Results
3-1. Protein families and structures studied.

Table: Protein Families Employed.

Pfam ID N / Neff
a M b / Meff

a L c PDB ID
PF00595† 13814 / 4748.8 1255 / 340.0 81 1GM1-A:16-96
PF00153 54582 / 19473.9 255 / 139.8 97 2LCK-A:112-208
†

Identical sequences are removed.
a

The effective number of sequences,
∑
σN

wσN , where the sample weight
wσN for a natural sequence σN is equal to the inverse of the number of
sequences that are less than 20% different from a given sequence.

b
The number of unique sequences that include no deletion for PF00595
and no more than 2 for PF00153.

c
The number of residues in a sequence.



3-2. Regularization Parameters and Characteristics of Boltzmann Machinesa with the ModAdam for PF00595.

MSA regularizers λ1 λ2 #Iter b DKL
1 DKL

2 δψ2/L c (ψ̄ − δψ2)/L d ψN/L e ψMC/L f Precision g

PF00595 L2-GL1 0.100/Neff = λ1 1250 0.00506 0.0709 3.23 −3.64 −3.64 −3.29 0.565
PF00595h L2-GL1 0.100/Neff 40.0/Neff 1162† 0.00369 0.0759 2.75 −3.15 −3.15 −2.79 0.588

(−2.81i )
MC1162‡ L2-GL1 0.100/Neff 40.0/Neff 1151 0.00283 0.0689 2.61 −2.98 −2.80 −2.63 0.500

(−2.82j )
MC1162‡ L2-GL1 0.891/Neff = λ1 1280 0.00296 0.0621 2.76 −3.14 −3.15 −2.93 0.457
MC1162‡h L2-GL1 0.891/Neff 12.6/Neff 1183 0.00275 0.0646 2.63 −3.00 −3.00 −2.79 0.483

(−2.93j )

PF00595 L2-L1 k 0.100/Neff = λ1 1201 0.00674 0.0747 3.19 −3.60 −3.61 −3.31 0.563
PF00595h L2-L1 k 0.100/Neff 0.316/Neff 1007 0.00497 0.0736 3.08 −3.48 −3.49 −3.13 0.560

PF00595 L2-L2 0.100/Neff = λ1 1047 0.00580 0.0737 3.13 −3.54 −3.55 −3.27 0.557
PF00595h L2-L2 0.100/Neff 25.1/Neff 1119 0.00387 0.0725 2.99 −3.39 −3.39 −3.04 0.551

Learning
method regularizers λ1 λ2 #Iter b DKL

1 DKL
2 δψ2/L c (ψ̄ − δψ2)/L d ψN/L e ψMC/L f Precision g

ModAdam h L2-L2 0.100/Neff 25.1/Neff 1119 0.00387 0.0725 2.99 −3.39 −3.39 −3.04 0.551
(second run) i 2018 0.00372 0.0696 3.12 −3.53 −3.52 −3.16 0.568

Adam h L2-L2 0.100/Neff 25.1/Neff 1012 0.00320 0.0681 3.35 −3.73 −3.59 −3.23 0.563
NAG h L2-L2 0.100/Neff 25.1/Neff 1110 0.00381 0.0724 2.94 −3.34 −3.34 −3.01 0.557

i 2095 0.00361 0.0690 3.08 −3.48 −3.48 −3.12 0.565
RPROP-LR j L2-L2 0.100/Neff 25.1/Neff 1052 0.00391 0.0766 2.97 −3.36 −3.28 −2.95 0.560



3-3. Adam under-estimates Jij(ak , al), particularly for strong interactions between
closely-located site pairs, because increments are the same order for all variables.
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3-4. The profile of the average evolutionary energies along the learning process.
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Figure: The profile of the average evolutionary energies along the learning process in the L2-L2 model by each gradient-descent
method, ModAdam, NAG, Adam, and RPROP-LR from the left to right, for PF00595.



3-5. Regularization Parameters and Characteristics of Boltzmann Machinesa with the ModAdam for PF00153.

MSA regularizers λ1 λ2 #Iter b DKL
1 DKL

2 δψ2/L c (ψ̄ − δψ2)/L d ψN/L e ψMC/L f Precision g

PF00153 L2-GL1 0.100/Neff = λ1 1084 0.00342 0.0264 2.71 −3.02 −3.29 −3.04 0.596
PF00153h L2-GL1 0.100/Neff 209/Neff 1445† 0.00112 0.0318 2.50 −2.82 −2.83 −2.54 0.630

(−2.51i )
MC1445‡ L2-GL1 0.100/Neff 209/Neff 1390 0.00151 0.0323 2.48 −2.82 −2.54 −2.52 0.630

(−2.83j )
MC1445‡ L2-GL1 7.94/Neff = λ1 1181 0.000975 0.0160 2.25 −2.57 −2.57 −2.47 0.551
MC1445‡h L2-GL1 7.94/Neff 20.0/Neff 1197 0.000985 0.0162 2.24 −2.55 −2.55 −2.43 0.557

(−2.64j )

PF00153 L2-L1 k 0.100/Neff = λ1 1149 0.00313 0.0265 2.73 −3.05 −3.32 −3.09 0.599
PF00153h L2-L1 k 0.100/Neff 25.1/Neff 1208 0.00165 0.0318 2.57 −2.91 −2.91 −2.66 0.557

PF00153 L2-L2 0.100/Neff = λ1 1223 0.00329 0.0264 2.76 −3.08 −3.35 −3.10 0.605
PF00153h L2-L2 0.100/Neff 398/Neff 1066 0.00119 0.0336 2.55 −2.87 −2.86 −2.52 0.569

λ1 and λ2 are scaling constants of the regularizers for {φi } and {φij }, respectively.
DKL

1 and DKL
2 are the averages of the Kullback-Leibler divergences of the site and pairwise distributions over all residues or residue pairs.

ψ̄ and δψ2 are the mean and variance of ψ over random sequences; ψ̄ − δψ2 is equal to the ensemble average of ψ(σ) in the Boltzmann distribution
by the Gaussian approximation.

e
The sample average of evolutionary energies per residue over the sequences with no more than 2 deletions for PF00153 and with no more than 3 for
the MCMC samples; the Ising gauge is employed.

f
The average of evolutionary energies per residue over the MCMC samples with no more than 3 deletions; the Ising gauge is employed.

g
Precision of contact prediction; the number of predicted contacts is 332, which is equal to the total number of closely located residue pairs within 8 Å
between side-chain centers in the 3D protein structure. The corrected Frobenius norm of couplings is employed for the contact score.



3-6. The L2-GL1 generates more reasonable values for Jij(ak , al) than the L2-L1 and L2-L2.
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3-7. Recoverabilities of {Cij(ak , al)} and ΨN for real protein and for protein-like sequences.
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Figure: Recoverabilities of the pairwise correlations by the Boltzmann machine learning with the L2-GL1 model and the ModAdam
method for the protein-like sequences, the MCMC samples that are obtained by the same Boltzmann machine for PF00595 and
PF00153. The MCMC samples obtained by the Boltzmann machine learning with the L2-GL1 model and the ModAdam method for
PF00595 and PF00153 are employed as protein-like sequences for which the Boltzmann machine learning with the same model and
method is executed again in order to examine how precisely the marginals of protein-like sequences can be recovered. The
marginals recovered by the Boltzmann machine learning for the MCMC samples are compared to those of the MCMC samples. The
left and right figures are for the single-site probabilities and pairwise correlations, respectively. The solid lines show the equal values
between the ordinate and abscissa. The overlapped points of Cij(ak , al) in the units 0.0001 are removed. See Tables 6 and 9 for the
regularization parameters employed.



3-8. Reproducibilities of {hi} and {Jij} for protein-like sequences (MCMC samples).
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Figure: Reproducibility of the fields and couplings in the Ising gauge by the Boltzmann machine learning with the L2-GL1 model and
the ModAdam method for the protein-like sequences, the MCMC samples that are obtained by the same Boltzmann machine for
PF00153. The MCMC samples obtained by the Boltzmann machine learning with the L2-GL1 model and the ModAdam method for
PF00153 are employed as protein-like sequences for which the Boltzmann machine learning with the same model and method is
executed again in order to examine how well the fields and couplings in the protein-like sequences can be reproduced. The fields
and couplings inferred by the Boltzmann machine learning for the MCMC samples are plotted against the actual values of their
interactions in the left and right figures, respectively. The solid lines show the equal values between the ordinate and abscissa. The
overlapped points of Jij(ak , al) in the units 0.001 are removed. See Table 9 for the regularization parameters employed.



3-9. Selective temperature Ts and constancy of the standard deviation of Ts∆ΨN due to single
amino acid substitutions.
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kB Ts for a reference protein, PF00595. Consistency of the standard deviation of ∆ψN over homologous proteins.
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Pfam ID ψN/L ∆ψN Sd(∆ψN) Sd(Sd(∆ψN)) for ∆ψN for Sd(∆ψN) (kcal/mol) (◦K) (◦K) (◦K) (kB )
PF00595 −3.15 3.94 2.64 0.113 −0.980 −1.90 −0.237 −0.113 0.920 0.400 201 313 k 215 1.20
PF00153 −2.84 3.36 2.71 0.141 −0.981 −1.91 −0.537 −0.338 196



4. Conclusions

The h and J learned by Boltzmann machine strongly depend on regularization methods and even gradient-descent
methods as well as regularization parameters. Such hyper parameters should be optimized for maximizing some kind
of accuracy in prediction. In the present case, however, the log-likelihood can be hardly evaluated even if its gradient
can be easily calculated, and of course the true values for h and J are unknown for proteins. Here we employed as a
criterion that Jij is sparse and significant for closely-located site pairs in a protein structure, and the sample average
and ensemble average of the total evolutionary energy (ψN) are equal to each other.

The Adam method underestimates Ji j, particularly for strong interactions. The gradient-descent methods in
which an increment vector is proportional to a gradient vector appear to be appropriate for sparse Jij ; they are
also required for soft-threading functions for L1 and group L1. Here the modified Adam was chosen.

As expected, the L2 − GL1 regularization is better for sparse Jij than L2 − L2 and L2 − L1.

The two regularization parameters, λ1 for {φi} and λ2 for {φij}, were determined to generate equal values for the
sample and ensemble average of ψN estimated by the Gaussian approximation.

hi(ak ) and Jij(ak , al) for protein-like sequences can be well reproduced as long as they are significant. However,
the distribution of ψN cannot be well reproduced for protein sequences but for protein-like sequences.

kBTsSd(∆ψN) ' Sd(∆∆GND) due to single amino acid changes is approximately constant over protein families,
and can be employed to estimate Ts ; Ts ≈ {TsSd(∆ψN)}ref. prot./Sd(∆ψN).
(Refer to J. Theor. Biol. 433, 21-38, 2017; DOI:10.1016/j.jtbi.2017.08.018 (arXiv:1612.09379).)

https://doi.org/10.1016/j.jtbi.2017.08.018
https://arxiv.org/abs/1612.09379
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