Scitation Home  |  AIP Journal Center  |  Article Purchases  |  Table of Contents Alert  |  Feedback  |  Help  |  Exit
JCP Home  Volume:   Page:  Search Browse

[ Previous / Next Abstract | Issue Table of Contents | Bottom of Page ]

The Journal of Chemical Physics -- 8 January 2005

J. Chem. Phys. 122, 024901  (2005) (18 pages)


Full Text:  [  HTML    Sectioned HTML    PDF (241 kB)   GZipped PS  ]    Order


view MyArticles
What is this?

How effective for fold recognition is a potential of mean force that includes relative orientations between contacting residues in proteins?

Sanzo Miyazawa
Faculty of Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
Laurence H. Baker Center for Bioinformatics and Biological Statistics, Plant Sciences Institute, Iowa State University, Ames, Iowa 50011-3020
Robert L. Jernigan
Laurence H. Baker Center for Bioinformatics and Biological Statistics, Plant Sciences Institute, Iowa State University, Ames, Iowa 50011-3020
Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011-3020

(Received 16 August 2004; accepted 1 October 2004; published online 16 December 2004)

We estimate the statistical distribution of relative orientations between contacting residues from a database of protein structures and evaluate the potential of mean force for relative orientations between contacting residues. Polar angles and Euler angles are used to specify two degrees of directional freedom and three degrees of rotational freedom for the orientation of one residue relative to another in contacting residues, respectively. A local coordinate system affixed to each residue based only on main chain atoms is defined for fold recognition. The number of contacting residue pairs in the database will severely limit the resolution of the statistical distribution of relative orientations, if it is estimated by dividing space into cells and counting samples observed in each cell. To overcome such problems and to evaluate the fully anisotropic distributions of relative orientations as a function of polar and Euler angles, we choose a method in which the observed distribution is represented as a sum of delta functions each of which represents the observed orientation of a contacting residue, and is evaluated as a series expansion of spherical harmonics functions. The sample size limits the frequencies of modes whose expansion coefficients can be reliably estimated. High frequency modes are statistically less reliable than low frequency modes. Each expansion coefficient is separately corrected for the sample size according to suggestions from a Bayesian statistical analysis. As a result, many expansion terms can be utilized to evaluate orientational distributions. Also, unlike other orientational potentials, the uniform distribution is used for a reference distribution in evaluating a potential of mean force for each type of contacting residue pair from its orientational distribution, so that residue-residue orientations can be fully evaluated. It is shown by using decoy sets that the discrimination power of the orientational potential in fold recognition increases by taking account of the Euler angle dependencies and becomes comparable to that of a simple contact potential, and that the total energy potential taken as a simple sum of contact, orientation, and (phi,psi) potentials performs well to identify the native folds.©2005 American Institute of Physics.


doi:10.1063/1.1824012
PACS: 87.15.Cc, 02.50.-r, 36.20.-r        Additional Information


Full Text:  [  HTML    Sectioned HTML    PDF (241 kB)   GZipped PS  ]    Order

References

Citation links [e.g., Phys. Rev. D 40, 2172 (1989)] go to online journal abstracts. Other links (see Reference Information) are available with your current login. Navigation of links may be more efficient using a second browser window.
    Auxiliary Material (EPAPS)

  1. S. Tanaka and H. A. Scheraga, Macromolecules 9, 945 (1976). [MEDLINE] [ChemPort]
  2. S. Miyazawa and R. L. Jernigan, Macromolecules 18, 534 (1985). [ISI] [ChemPort]
  3. S. Miyazawa and R. L. Jernigan, J. Mol. Biol. 256, 623 (1996). [ISI] [MEDLINE] [ChemPort]
  4. S. Miyazawa and R. L. Jernigan, Proteins 34, 49 (1999). [ISI] [MEDLINE] [ChemPort]
  5. S. Miyazawa and R. L. Jernigan, Proteins 36, 347 (1999). [ISI]
  6. S. Miyazawa and R. L. Jernigan, Proteins 36, 357 (1999). [ISI] [MEDLINE] [ChemPort]
  7. S. Miyazawa and R. L. Jernigan, Protein Eng. 13, 459 (2000). [MEDLINE] [ChemPort]
  8. M. J. Sippl, J. Mol. Biol. 213, 859 (1990). [ISI] [MEDLINE] [ChemPort]
  9. A. Godzik, A. Kolinski, and J. Skolnick, Protein Sci. 4, 2107 (1995). [ISI] [MEDLINE] [ChemPort]
  10. C. Zhang and S. H. Kim, Proc. Natl. Acad. Sci. U.S.A. 97, 2550 (2000). [MEDLINE] [ChemPort]
  11. F. Melo and E. Feytmans, J. Mol. Biol. 267, 207 (1997). [ISI] [MEDLINE] [ChemPort]
  12. C. Zhang, G. Vasmatzis, J. L. Cornette, and C. DeLisi, J. Mol. Biol. 267, 707 (1997). [MEDLINE] [ChemPort]
  13. R. Samudrala and J. Moult, J. Mol. Biol. 275, 895 (1998). [ISI] [MEDLINE] [ChemPort]
  14. P. Mallick, R. Weiss, and D. Eisenberg, Proc. Natl. Acad. Sci. U.S.A. 99, 16041 (2002). [MEDLINE] [ChemPort]
  15. A. Liwo, S. Oldziej, M. R. Pincus, R. J. Wawak, S. Rackovsky, and H. A. Scheraga, J. Comput. Chem. 18, 849 (1997). [ISI] [ChemPort]
  16. A. Liwo, M. R. Pincus, R. J. Wawak, S. Rackovsky, S. Oldziej, and H. A. Scheraga, J. Comput. Chem. 18, 874 (1997). [Inspec] [ISI] [ChemPort]
  17. A. Liwo, R. Kazmierkiewicz, C. Czaplewski et al., J. Comput. Chem. 19, 259 (1998). [ISI] [ChemPort]
  18. B. N. Dominy and C. L. Brook III, J. Comput. Chem. 23, 147 (2002). [Inspec] [ISI] [MEDLINE] [ChemPort]
  19. G. M. Crippen, Biochemistry 30, 4232 (1991). [ISI] [MEDLINE] [ChemPort]
  20. V. N. Maiorov and G. M. Crippen, J. Mol. Biol. 227, 876 (1992). [ISI] [MEDLINE] [ChemPort]
  21. L. A. Mirny and E. I. Shakhnovich, J. Mol. Biol. 264, 1164 (1996). [ISI] [MEDLINE] [ChemPort]
  22. M. Vendruscolo, L. A. Mirny, E. I. Shakhnovich, and E. Domany, Proteins 41, 192 (2000). [MEDLINE] [ChemPort]
  23. D. Toby, G. Shafran, N. Linial, and R. Elber, Proteins 40, 71 (2000). [ISI] [MEDLINE] [ChemPort]
  24. D. Toby and R. Elber, Proteins 41, 40 (2000). [ISI] [MEDLINE] [ChemPort]
  25. B. Fain, Y. Xia, and M. Levitt, Protein Sci. 11, 2010 (2002). [MEDLINE]
  26. K. T. Simons, C. Ruczinski, C. Kooperberg, B. Fox, C. Bystroff, and D. Baker, Proteins 34, 82 (1999). [MEDLINE] [ChemPort]
  27. A. R. Panchenko, A. Marchler-Bauer, and S. H. Bryant, J. Mol. Biol. 296, 1319 (2000). [MEDLINE] [ChemPort]
  28. A. Kolinski, A. Godzik, and J. Skolnick, J. Chem. Phys. 98, 7420 (1993). [ISI] [ChemPort]
  29. A. Kolinski, A. Godzik, and J. Skolnick, Proteins 26, 271 (1996). [ISI] [MEDLINE] [ChemPort]
  30. P. J. Munson and R. K. Singh, Protein Sci. 6, 1467 (1997). [ISI] [MEDLINE]
  31. C. W. Carter, Jr., B. C. LeFebvre, S. A. LCammer, A. Tropsha, and M. H. Edgell, J. Mol. Biol. 311, 625 (2001).
  32. A. Liwo, C. Czaplewski, J. Pillardy, and H. A. Scheraga, J. Chem. Phys. 115, 2323 (2001). [ISI] [ChemPort]
  33. K. Onizuka, T. Noguchi, Y. Akiyama, and H. Matsuda, Control Intell. Syst. 17, 48 (2002).
  34. N.-V. Buchete, J. E. Straub, and D. Thirumalai, J. Chem. Phys. 118, 7658 (2003). [ISI]
  35. N.-V. Buchete, J. E. Straub, and D. Thirumalai, Protein Sci. 13, 862 (2004). [MEDLINE] [ChemPort]
  36. B. Park and M. Levitt, J. Mol. Biol. 258, 367 (1996). [ISI] [MEDLINE] [ChemPort]
  37. K. T. Simons, C. Kooperberg, E. S. Huang, and D. Baker, J. Mol. Biol. 268, 209 (1997). [ISI] [MEDLINE] [ChemPort]
  38. R. Samudrala, Y. Xia, M. Levitt, and E. S. Huang, Proceedings of the Pacific Symposium on Biocomputing 1999.
  39. R. Samudrala and M. Levitt, Protein Sci. 9, 1399 (2000). [MEDLINE]
  40. D. G. Covell and R. L. Jernigan, Biochemistry 29, 3287 (1990). [ISI] [MEDLINE] [ChemPort]
  41. J. Lee, A. Liwo, D. R. Ripoll, J. Pillardy, J. A. Saunders, K. D. Gibson, and H. A. Scheraga, Int. J. Quantum Chem. 77, 90 (2000). [Inspec] [ISI]
  42. Y. Zhang, A. Kolinski, and J. Skolnick, Biophys. J. 85, 1145 (2003). [Inspec] [MEDLINE] [ChemPort]
  43. J. Lee, A. Liwo, and H. A. Scheraga, Proc. Natl. Acad. Sci. U.S.A. 96, 2025 (1999). [ISI] [MEDLINE] [ChemPort]
  44. S. Miyazawa and R. L. Jernigan, Proteins 50, 35 (2003). [MEDLINE]
  45. I. Bahar and R. L. Jernigan, Folding Des. 1, 357 (1996). [MEDLINE] [ChemPort]
  46. C. Chothia, Nature (London) 254, 304 (1975). [Inspec] [MEDLINE] [ChemPort]
  47. C. Chothia and J. Janin, Nature (London) 256, 705 (1975). [Inspec] [ISI] [MEDLINE] [ChemPort]
  48. A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, J. Mol. Biol. 247, 536 (1995). [ISI] [MEDLINE] [ChemPort]
  49. C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, and J. C. Wootton, Science 262, 208 (1993). [ISI] [MEDLINE] [ChemPort]
  50. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne, Nucleic Acids Res. 28, 235 (2000). [ISI] [MEDLINE] [ChemPort]
  51. M. Levitt, J. Mol. Biol. 226, 507 (1992). [ISI] [MEDLINE] [ChemPort]
  52. See EPAPS Document No. E-JCPSA6-121-519447 for additional tables. A direct link to this document may be found in the online article's HTML reference section. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information. [EPAPS]
  53. Orientational potentials used here are available on the author's URLs.

  The American Institute of Physics is a member of CrossRef.


Full Text:  [  HTML    Sectioned HTML    PDF (241 kB)   GZipped PS  ]    Order

[ Previous / Next Abstract | Issue Table of Contents | Top of Page ]

[JCP Home] [All Online Issues: Browse | Search] [SPIN Database: Search] [HELP] [EXIT]

Copyright © 2004 American Institute of Physics
Copyright Statement : Rights & Permissions : Permitted/Prohibited Uses