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Abstract

We used the modified decoupled cell method (mDCM) of the quantum Monte Carlo simulation to calculate the thermo-
dynamic properties and spin configurations of the frustrated J,—J, model on a square lattice by increasing the frustration
parameter a = J,/J; from 0 to 1. The size N of the system used in the Monte Carlo simulation in this study is 32 x 32. For
small values of o the Néel state is a ground state spin configuration of this model system, and for a > 0.6 a collinear state is

the ground state configuration instead of the Néel state.

Since the discovery of high Tt superconductors the
two-dimensional quantum spin (s = 1) system has
received much attention experimentally as well as the-
oretically (for a review see Ref. [1]). Particularly the
frustrated J;-J, model on the square lattice (here-
after we call it the J;,-J, model) has attracted much
interest because of the suggestion that the effect of
hole doping in high T¢ superconductors may be simu-
lated by the introduction of frustrations into the anti-
ferromagnetic Heisenberg model with nearest neigh-
bor interaction [2]. And this model is also expected
to exhibit interplay between the frustration and the
quantum fluctuation, an important problem in low-
dimensional quantum spin systems. The main prob-
lem is which is the ground state spin configuration
when the frustration parameter o = J,/J; increases
from 0 to 1.

In the case of the classical J;-J, model the ground
state is the Néel-ordered state for oo < 0.5, and the con-
tinuously degenerate four-sublattice state for o > 0.5.
At o = 0.5, the two classical states are degenerate. In

the quantum case the Néel order is believed to be the
stable ground state for o < 0.5. The nonexistence of
the twisted ordered state has been proved [3]. For the
case where « is near 1, it is supposed that collinear
states are the ground state spin configuration [4]. In
the region, in which « is near 0.5, the ground state con-
figuration still remains to be solved. For theoretical
studies the spin wave theory, ordinary as well as mod-
ified [5,6], Schwinger-boson mean-field theory [7],
finite lattice study [8] and series expansions [9] are
to be noted. However, their results for the ground state
spin configuration are different from each other. For
example some works predicted a disordered or spin
liquid state at around o = 0.5, and others claimed
that the classical Néel state is a ground state configu-
ration even in the quantum mechanical J,-J, model.
Numerical studies of finite lattices based on the ex-
act diagonalization method gave results showing that
at 0 K the Néel state gradually decreases with the in-
crease of @ and at about o = 0.6 this state disappears.
However, the number of lattice sites included in those
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studies were at most 36 and this is not enough to ex-
tract definite conclusions about the physical quanti-
ties of the system in the thermodynamic limit.

To overcome this difficulty and to extend the study
to finite temperatures, a quantum Monte Carlo cal-
culation was used by invoking the generalized Trot-
ter formula (Suzuki-Trotter formula), giving infor-
mation about the magnetic properties of this model
[10]. However, there exists a serious negative sign
problem there and the lattice sizes used there were
also small. Therefore it is desirable to invoke a quan-
tum Monte Carlo method free from the negative sign
problem and also able to extend the lattice size eas-
ily. The modified decoupled cell method (mDCM) is
free from these problems [11,12].

It is the purpose of this short note to study the
quantum J;-J, model on a square lattice by applying
the mDCM and to show the results obtained. The ba-
sic ingredients and detailed procedures of the Monte
Carlo calculation of the mDCM are described in Refs.
[11,12].

The Hamiltonian of the quantum J;-J, model is
defined as

nnn

H=2J12S,--S,-+2J22S,--Sj. (1)
i,j i,j

Here J, and J, are the nearest-neighbor and next-
nearest-neighbor interactions, both are antiferromag-
netic (J;,J>» > 0) on a square lattice. .S; is the quan-
tum spin operator (S = 1) of the ith lattice site. The
Hamiltonian is isotropic, so that we take the z-axis
as the axis of diagonal representation. The thermo-
dynamic quantities we calculate here are the internal
energy, specific heat, total magnetization, susceptibil-
ity of the total system and also spin configurations at
various temperatures for a given frustration parame-
ter . We did not calculate staggered magnetizations
and susceptibilities, for at present we do not know the
spin configuration of the Hamiltonian for a given a.
The size of the decoupled cell (DC) used here is de-
picted in Fig. 1, where the interaction on each edge
is 3J; instead of J;. This arises because the coupling
constants on the edge of the DC are split equally into
two neighboring DC in the cell (DC) decomposition
of the Hamiltonian. The number # of lattice sites in-
cluded in the DC of Fig. 1 is nine. The total number
N of lattice points in the system used in our Monte

J; J1/2

Fig. 1. Size of a decoupled cell (DC).

Carlo calculations are 32 x 32 with a periodic bound-
ary condition.

The calculations were performed using the
Metropolis Monte Carlo procedure. The run was
taken at kg7 = 2.0J;, starting from a random con-
figuration. The first 1000 Monte Carlo steps (MCS)
were used to stabilize the system in thermal equi-
librium and the following 10000 MCS were used to
calculate the thermodynamic quantities and the spin
configurations. The system is then cooled in steps
down to kg7 = 0.1J;. For each temperature the
initial configuration was taken from the final con-
figuration of the previous temperature and the first
1000 MCS were used to get thermal equilibrium.

In calculating the energy of the system we have used
the following expression,

r(n)
) 1 ;
€ = T = Nrn) ; (Z(HM(J>k)>)’ (2)

k

where ( ) denotes average with respect to the cell
Hamiltonian H,(j,k) and r(n) means the number
of different decompositions. The sum over k and j
means sum of the cells over a whole lattice and sum
over all different decompositions. For the DC de-
picted in Fig. 1 r(n = 9) is 4. The specific heat c is
calculated as

L _ A
= 37
The total magnetization M, along the z-axis is

M, = <Zs> (4)

(3)
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Fig. 2. Specific heat of the quantum J;-J, model (J;-J»
model), where the numerical values represent the value of
Q.
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Fig. 3. Mean square magnetization m,(2) of the J;-J;
model.

o
o

Here () denotes canonical average of Q. The mean
square magnetization of a system, which is denoted
by m;(2), is defined as

2
m:(2) = §<(2S5) > (5)

Thus, the magnetic susceptibility y of the system is
calculated as
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Fig. 4. The spin correlation function CZ(r) along the x-axis,
where the numerical values mean distance in units of lattice
constant.

1 A\ m )
x= m<(23) )= P ®

The spin pair correlation function C?(r), which is
defined as

C*(r) = (SFSE, (7)

was calculated along the x- and y-axis and also along
the diagonal directions of the square lattice. In Fig. 2
we show the specific heat for various values of a.

There are two things to be noticed. The specific heat
peak is sharp in the extreme cases of & = 0 and 1, and
appears in the high temperature side. This sharpening
of the peaks might be interpreted as gradual order-
ing of the system into the Néel state and the collinear
state, respectively. Second, the height and the posi-
tion of the peaks at intermediate values of o become
low and move to the low temperature region. Thus,
the peak indicates that one does not expect any finite
temperature transition. In Fig. 3 the result of m.(2)
for « = 1 is shown, from which we obtain y. From
the figure we see that y is constant till kg7 /J; = 1,
which is a little bit higher than the position of the peak
of specific heat, and goes to zero with decreasing tem-
perature. We have observed similar behaviors for dif-
ferent values of the frustration parameter «. For the
total magnetization M, we always observed zero as it
should be.

The temperature dependence of the spin pair corre-
lations C?(r) along the x- and y-direction for a = 1
are shown in Figs. 4 and 5, respectively. In each figure
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Fig. 5. The spin correlation function CZ(r) along the y-axis,
where the numerical values mean distance in units of lattice
constant.
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Fig. 6. The spin configuration of the J;-J, model for
a=10atkgT = 0.1J.

the numerical values indicate r in units of the near-
est neighbor distance. From these figures we see that
below kg7 = 0.9J; the collinear spin configuration
dominates. This temperature corresponds to the posi-
tion of the peak in the specific heat. From C?(r) we
can depict the spin configuration, which is shown in
Fig. 6 for the case of o = 1 at kgT = 0.1J;, where the
full and open circles mean up and down spin, respec-
tively. In a similar way we are able to show the spin
configurations of the J;—J; model for a given frustra-
tion parameter « and temperature 7.

In Figs. 7-9 we show the spin configurations fora =
0.5, 0.6 and 0.7 at temperature kg7 = 0.1J;. From

CeOCeOe®OCe O e eo
L JNCRN RNORN NNOHN NEONN RGN BNORN )
Ce OO eOe e o eo0
® OO0 Oe®OeOe e
CeO0OeOCeOCe O e O eo
®e OO0 OO0 OCeOeCe
CeOeOCe@O0Ce O e o e
® OO0 OO0 O0Oe e oe
CeOeOeOe O e O e oo
| JECHN RGN NNONN NNCHN NNORN NEORN J
CeOeOeOCeOe o e o
®e OO0 OO0 OeOCeO0e
CeOe®e0OeOeOe o eo

Fig. 7. The spin configuration of the J;-J, model for
a=05atkgT = 0.1J;.
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Fig. 8. The spin configuration of the J;-J, model for
a = 0.6 at kBT = 01]1

these figures we see that at a = 0.5 the Néel state
might be the ground state spin configuration, whereas
at a = 0.7 the collinear state seems to be the stable
one. At o = 0.6 we see, from Fig. 8, the beginning of
an increase of the collinear structure.

At present it is not certain that at 0 K there exists
phase transition from the Néel state to a collinear state
when the frustration parameter « is increased. In or-
der to obtain a definite conclusion about the behavior
of the system near o« = 0.6 in the low temperature re-
gion, we have to enlarge the size of the DC as well as
the size of the system. This problem will be studied in
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Fig. 9. The spin configuration of the J;-J, model for
a =0.7atkgT = 0.1J;.

the future.

In this study we have applied the mDCM, which is
free from negative sign problem, to the quantum J,-J;
model on a square lattice and have calculated thermo-
dynamic quantities such as internal energy, specific
heat and magnetic susceptibility as well as spin con-
figurations at various values of frustration parameter
« and temperature 7.

We have obtained the result that for small values of
« the spin configuration is the Néel ordered state and
at « = 0.5, for which the spin configuration is degen-
erate in the classical case, it is still the Néel state. For
a > 0.6 we have observed that the spin configuration

in the low temperature region is collinear. Our results
at finite temperature seem to indicate the existence
of long-range order. However this is an artifact aris-
ing from the finiteness of the system sizes used in the
present Monte Carlo calculations.

Detailed results of the present work will be pub-
lished elsewhere.
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