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1. Education

Education

April 1966 - March 1970
Tokyo Metropolitan University, Department of Physics

April 1970 - May 1973
Nagoya University, Graduate Division, Department of Physics

June 1973 - March 1978
Kyushu University, Graduate division, Department of Biology

March 1978
Doctor of Science from Nagoya University

Relationship between the type of amino acid substitutions in
protein evolution and site position in protein strucure.
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Research/teaching experience

April 1978 - March 1979
Postdoctoral Trainee, Department of Biology, Kyushu University
May 1979 - Nov. 1985
Visiting Fellow/Associate,
Laboratory of Experimental and Computational Biology,
CCR, NCI, National Institutes of Health, USA

Protein folding process:
Miyazawa, Sanzo, and Jernigan, Robert L.:
Equilibrium folding and unfolding pathways for a model protein.
Biopolymers, Vol. 21, pp. 1333-1363, (1982).
Miyazawa, Sanzo, and Jernigan, Robert L.:
Most probable intermediates in protein folding-unfolding with a
non-interacting globule-coil model.
Biochemistry, Vol. 21, pp. 5203-5213, (1982).
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Protein folding process:

Miyazawa, Sanzo, and Jernigan, Robert L.:
Equilibrium folding pathways for model proteins.
Journal of Statistical Physics, Vol. 30, pp. 549-559, (1983).

Knowledge-based interaction potential between residues from known
protein 3D structures

Miyazawa, Sanzo, and Jernigan, Robert L.:
Estimation of effective interresidue contact energies in protein crystal
structures: quasi-chemical approximation.
Macromolecules, Vol. 18, pp. 534-552, (1985).
Top 10th most cited until 2006 in Macromolecule.
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Others:

Miyazawa, Sanzo:
Cooperative ligand binding on multi-dimensional lattices: Bethe
approximation.
Biopolymers, Vol. 22, pp. 2253-2271, (1983).
Miyazawa, Sanzo:
Statistical mechanics of supercoiling-induced B-to-Z transitions in a
closed circular DNA: one-dimensional model system with a double
quadratic displacement potential and long range interactions.
Journal of Chemical Physics, Vol. 83, pp. 859-883, (1985).
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Dec. 1985 - March 1991
Associate Professor, Center for Genetic Information Research
National Institute of Genetics in Japan

Oct. 1988 - March 1991
Associate Professor, Department of Genetics,
The Graduate University for Advanced Studies

Task: to establish DNA Sequence Data Bank of Japan (DDBJ)
subtask: to establish a IP network with GenBank and EMBL

Miyazawa, Sanzo:
DNA Data Bank of Japan: present status and future plans.
In: Computers and DNA, Santa Fe Institute Studies in the Sciences
of Complexity. Vol. VII, Eds. G. I. Bell and T. G. Marr, Reading MA:
Addison-Wesley, ISBN 0-201-51505-9, pp. 47-61, (1990).



2-3. At Gunma Univ., 1

April 1991 - March 2007
Associate Professor, Department of Basic Science,
Faculty of Engineering, Gunma University

April 2007 - March 2013
Associate Professor, Department of Information Science,
Graduate School of Engineering, Gunma University

Teaching:

For undergraduates: C language, Data structure, Sort and Merge
For graduates: Bioinformatics; protein structure, stochastic Hopfield
network, sequence alignment, hidden Markov model, sequence
analysis, genome science, phylogeny, Bayesian network, SVM

Design and Management of Campus LAN

August - September 2003, August - September 2004, September 2005
Visiting Professor, L. H. Baker Center for Bioinformatics,
Iowa State University, USA
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Probabilistic alignment method
Miyazawa, Sanzo:
A reliable sequence alignment method based on probabilities of residue
correspondences.
Protein Engineering, Vol. 8, pp. 999-1009, (1995).

Alignment Al

Al ≡

[
. . . a2 a3 − − a4 . . .

. . . − b3 b4 b5 b6 . . .

]
(1)

Total alignment score S(Al) of Al

Assuming that there is no correlation between site correspondences,

S(Al) ≡
∑
{(i,j)∈Al }

s(ai , bj) − (penalty for gaps) (2)

where

s(ai , bj) a similarity score for a pair of amino acids ai and bj
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The maximum similarity alignment

The maximum similarity alignment ≡ A such that S(A) = max
l

S(Al) (3)

The probabilistic alignment

We assume that each alignment Al is probable with the probability P(Al).

P(Al) ∝ exp(
S(Al)

T
) (4)

where T is a scaling parameter.

The most probable alignment ≡ A such that P(A) = max
l

P(Al)

= A such that S(A) = max
l

S(Al)

= The maximum score alignment (5)



Probabilistic pairwise alignment method, 3/6

Probabilities of residue-residue correspondences
The probability p(ai , bj) that two sites ai and bj correspond to each other in all
feasible alignments can be represented by

p(ai , bj) =
1
Z

Zi−1,j−1 exp(
s(ai , bj)

T
) Z ′i+1,j+1 (6)

p(ai ,−) = 1 −
n∑

j=1

p(ai , bj)

p(−, bj) = 1 −
m∑

i=1

p(ai , bj) (7)

where Z ′i+1,j+1 is the partition function for partial sequences of a consisting of ai+1 to
am and b from bj+1 to bn. m and n are the sequence length of a and b.
This method is well known as the transfer matrix method in statistical physics and
the Viterbi algorithm with the forward and backward algorithm for HMM in the field
of information science.
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Probability alignment
An probability alignment, which consists of the most probable correspondences, can
be made by iteratively choosing a site pair with the maximum probability as follows.

1 Set i1 = 1, i2 = m, j1 = 1, and j2 = n.
2 Calculate a site pair (ai , bj) such that p(ai , bj) = maxi1≤k≤i2,j1≤l≤j2 p(ak , bl),

p(ai , bj) ≥ p(ai ,−), and p(ai , bj) ≥ p(−, bj).
3 If there is no such a site pair, align − to all sites of i1 ≤ i ≤ i2 and of j1 ≤ j ≤ j2.
4 If (ai , bj) is such a site pair, choose it as one of residue-residue

correspondences in the alignment. Then, repeat the steps of 2 to 4 to align the
remaining segments until all the sites are aligned.

This alignment may include residue correspondences that do not correspond to the
most probable one for either one, and whose probabilities are not significantly high.
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A threshold of the probability for reliable residue correspondences

A site pair (ai , bj) with p(ai , bj) > 0.5 is the most probable correspondence for a
given site ai and for bj .

All correspondences with p(ai , bj) > 0.5, p(ai ,−) > 0.5, and p(−, bj) > 0.5 can
constitute an alignment.

Therefore residue correspondences with p > 0.5 are highly probable
correspondences in the probability alignment.
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However, the condition of Equation 13 is not sufficient to say that site pairs with
p(ai , bj) > 0.5, p(ai , φ) > 0.5, and p(φ, bj) > 0.5 can constitute an alignment. In
addition, the sequence order among residue correspondences must be compatible
with an alignment, that is, the following condition must be satisfied for a set of site
pairs to be able to constitute an alignment.

Lemma Let p(ai , bj) > 0.5 and p(ak , bl) > 0.5. If i < k , then j < l.
Proof Any alignment with the match/mismatch pair of ai and bj cannot
have any match/mismatch pair of ak and bl with i < k and j ≥ l. Thus, if

p(ai , bj) > 0.5, then
j∑

l=1

p(ak , bl) < 0.5 for i < k . Therefore, when

p(ai , bj) > 0.5 and p(ak , bl) > 0.5, if i < k , then j < l.

Thus, all correspondences with p(ai , bj) > 0.5, p(ai , φ) > 0.5, and p(φ, bj) > 0.5 can
constitute an alignment, and therefore are highly probable correspondences in the
probability alignment that is constructed by the procedure already described in this
section.
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Knowledge-based residue potential to estimate the folding energy of
protein, 1:

Miyazawa, Sanzo, and Jernigan, Robert L.:
Protein stability for single substitutions mutants and the extent of
local compactness in the denatured state,
Protein Engineering, Vol. 7, pp. 1209-1220, (1994).
Miyazawa, Sanzo, and Jernigan, Robert L.:
Residue-residue potentials with a favorable contact pair term and an
unfavorable high packing density term for simulation and threading.
Journal of Molecular Biology, Vol. 256, pp. 623-644, (1996).
Miyazawa, Sanzo, and Jernigan, Robert L.:
Self-consistent estimation of inter-residue protein contact energies
based on an equilibrium mixture approximation of residues.
PROTEINS: Structures, Function, and Genetics, Vol. 34, pp. 49-68,
(1999).
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Knowledge-based residue potential to estimate the folding energy of
protein, 2:

Miyazawa, Sanzo, and Jernigan, Robert L.:
Evaluation of short-range interactions as secondary structure
energies for protein fold and sequence recognition.
PROTEINS: Structures, Function, and Genetics, Vol. 36,
pp. 347-356, (1999).
Miyazawa, Sanzo, and Jernigan, Robert L.:
An empirical energy potential with a reference state for protein fold
and sequence recognition.
PROTEINS: Structures, Function, and Genetics,
Vol. 36, pp. 357-369, (1999).
Miyazawa, Sanzo and Jernigan, Robert L.:
Long- and short-range interactions in native protein structures are
consistent/minimally-frustrated in sequence space.
PROTEINS: Structures, Function, and Genetics, Vol. 50, pp. 35-43,
(2003).
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Protein sequence-structure probabilistic alignment by evaluating
residue-residue interactions with the knowledge-based potential in the
mean field approximation; in other words, threading sequence into
structure

Miyazawa, Sanzo, and Jernigan, Robert L.:
A new substitution matrix for protein sequence searches based on
contact frequencies in protein structures.
Protein Engineering, Vol. 6, pp. 267-278, (1993).
Miyazawa, Sanzo and Jernigan, Robert L.:
Identifying sequence-structure pairs undetected by sequence
alignments.
Protein Engineering, Vol. 13, pp. 459-475, (2000).
Miyazawa, Sanzo:
Protein Sequence-Structure Alignment Based on Site-Alignment
Probabilities.
Genome Informatics, Vol. 11, pp. 141-150, (2000).
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Knowledge-based residue potential to estimate the folding energy of
protein, 3:

Miyazawa, Sanzo and Jernigan, Robert L.:
How effective for fold recognition is a potential of mean force that
includes relative orientations between contacting residues in
proteins?
Journal of Chemical Physics, Vol. 122, 024901(pp. 1-18), (2005).
Miyazawa, Sanzo and Kinjo, Akira R.:
Properties of contact matrices induced by pairwise interactions in
proteins.
Physical Review E, Vol. 77, 051910/1-10, (2008).
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Molecular phylogeny:

Miyazawa, Sanzo:
Selective constraints on amino acids estimated by a mechanistic
codon substitution model with multiple nucleotide changes.
PLoS One, Vol. 6, e17244/1-22, (2011).
Miyazawa, Sanzo:
Advantages of a mechanistic codon substitution model for
evolutionary analysis of protein-coding sequences.
PLoS One, Vol. 6, e28892/1-20, (2011).
Miyazawa, Sanzo:
Superiority of a mechanistic codon substitution model even for
protein sequences in phylogenetic an alysis.
BMC Evol. Biol., 13, 257, 2013.
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Characteristics of protein evolution:

Miyazawa, Sanzo:
Selection maintaining protein stability at equilibrium.
J. Theor. Biol., 391, 21-34, 2016.
Miyazawa, Sanzo:
Selection originating from protein stability/foldability: Relationships
between protein folding free energy, sequence ensemble, and
fitness.
J. Theor. Biol., 433, 21-38, 2017.



Prediction of contact residue pairs in protein structure, 1

Prediction of contact residue pairs based on co-substitution between sites in
protein structures

Miyazawa, Sanzo:
Prediction of contact residue pairs based on co-substitution between sites in
protein structures.
PLoS One, Vol. 8, e54252/1-20, (2013).

Miyazawa, Sanzo:
Prediction of structures and interactions from genome information.
https://arxiv.org/abs/1709.08021 , (2017).
This manuscript is supposed to be printed as a chapter of a book, "Integrative
Structural Biology with Hybrid Methods" as one of the book series: Advances in
Experimental Medicine and Biology from Springer.



Background

Residue-residue interactions, which fold a protein into a unique 3D structure
and make it play a specific function, impose structural and functional constraints
on each amino acid.

Structural and functional constraints are recorded
• in amino acid orders in homologous protein sequences and also
• in the evolutionary trace of amino acid substitutions.

Structural and functional constraints arise from interactions between sites
mostly in close spatial proximity.

As a result, the types of amin acids and amino acid substitutions must be
correlated between sites particularly in close spatial proximity.

A present challenge is to extract only direct dependences between sites by
excluding indirect correlations through other sites and phylogenetic bias.
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Two approaches to infer co-evolving site pairs

1 From the equilibrium distribution of amino acid sequences;
ex. Direct Information (DI) score based on an inverse Potts problem.

Recently remarkable prediction accuracy of contact residue pairs was achieved
by extracting essential correlations of amino acid types between residue
positions by Bayesian graphical models and with a direct information (DI) score.

2 From the dynamic process of amino acid substitutions: The present approach.

Here, we report an alternative approach of inferring co-evolving site pairs from
concurrent and compensatory substitutions between sites in each branch of a
phylogenetic tree.
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Maximum entropy model for the distribution of protein sequences
Let us consider a probability distribution P(σ) of amino acid sequences,
σ ≡ (σ1, . . . , σL )T with σi ∈ {amino acids, deletion}, single-site and two-site
marginal probabilities of which are equal to a given frequency Pi(ak ) of amino acid
ak at each site i and a given frequency Pij(ak , al) of amino acid pair (ak , al) for site
pair (i, j), respectively.

P(σi = ak ) ≡
∑
σ

P(σ)δσiak = Pi(ak ) (8)

P(σi = ak , σj = al) ≡
∑
σ

P(σ)δσiak δσjal = Pij(ak , al) (9)

where ak ∈ {amino acids, deletion}, k = 1, . . . , q, q ≡ |{amino acids, deletion}| = 21
i, j = 1, . . . , L , and δσiak is the Kronecker delta. The distribution PME with the
maximum entropy is

PME(σ|h, J) =
1
Z

e−HPotts(σ|h,J) (10)

where a Hamiltonian HPotts, which is called that of the Potts model for q > 2 (or the
Ising model for q = 2), and a partition function Z are defined as

−HPotts(σ|h, J) =
∑

i

hi(σi) +
∑
i<j

Jij(σi , σj) , Z =
∑
σ

e−HPotts(σ|h,J) (11)

where hi(ak ) and Jij(ak , al) are interaction potentials called fields and couplings.
Although pairwise frequencies Pij(ak , al) reflect not only direct but indirect
correlations in amino acid covariations between sites, couplings Jij(ak , al) reflect
causative correlations only. Thus, it is essential to estimate fields and couplings
from marginal probabilities. This model is called the inverse Potts model.
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Log-likelihood and log-posterior probability
Log-posterior-probability and log-likelihood for the Potts model are

log Ppost(h, J|{σ}) ∝ `Potts({Pi}, {Pij}|h, J) + log P0(h, J) (12)

`Potts({Pi}, {Pij}|h, J) = B
∑
σ

Pobs(σ) log PME(σ|h, J) (13)

where Pobs(≡
∑B
τ=1 δσστ/B) is the observed distribution of σ specified with {Pi(ak )}

and {Pij(ak , al)}, and B is the number of instances; sequences στ are assumed here
to be independently and identically distributed samples in sequence space. P0(h, J)

is a prior probability of (h, J).
Let us define cross entropy[?] as the negative log-posterior-probability per instance.

S0(h, J|{Pi}, {Pij}) ∝ −(log Ppost(h, J|{σ}))/B

≡ SPotts(h, J|{Pi}, {Pij}) + R(h, J) (14)

where the cross entropy SPotts, which is the negative log-likelihood per instance for
the Potts model, and the negative log-prior per instance R are defined as follows.

SPotts(h, J|{Pi}, {Pij}) ≡ −`Potts({Pi}, {Pij}|h, J)/B (15)

= log Z(h, J) −
∑

i

∑
k

hi(ak )Pi(ak ) −
∑

i

∑
k

∑
j>i

∑
l

Jij(ak , al)Pij(ak , al)(16)

R(h, J) ≡ − log(P0(h, J))/B (17)

The cross entropy SPotts(h, J|{Pi}, {Pij}) in Eq. 16 is invariant under the transformation
of fields and couplings, Jij(ak , al)→ Jij(ak , al) − J1

ij (ak ) − J1
ji (al) + J0

ij ,
hi(ak )→ hi(ak ) − h0

i +
∑

j,i J1
ij (ak ) for any J1

ij (ak ), J0
ij and h0

i . This gauge-invariance
reduces the number of independent variables in the Potts model to (q − 1)L fields
and (q − 1)L × (q − 1)L couplings.
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Given marginal probabilities, the estimates of fields and couplings are those
minimizing the cross entropy.

(h, J) = arg min
(h,J)

S0(h, J|{Pi}, {Pij}) , S0({Pi}, {Pij}) ≡ min
(h,J)

S0(h, J|{Pi}, {Pij})(18)

Since S0({Pi}, {Pij}) is the Legendre transform of (log Z(h, j) + R(h, J)) from (h, J) to
({Pi}, {Pij}), these optimum h and J can also be calculated from

hi(ak ) = −
∂S0({Pi}, {Pij})

∂Pi(ak )
, Jij(ak , al) = −

∂S0({Pi}, {Pij})

∂Pij(ak , al)
(19)

In most methods for contact prediction, residue pairs are predicted as contacts in
the decreasing order of score (Sij) calculated from fields {Jij(ak , al)|1 ≤ k , l < q};
see Eqs. ?? and ??.
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Various methods to estimate (h, J)

Boltzmann machine

Message passing algorithm to estimate marginal probabilities

Mean field approximation for the inverse Potts model

Continuous multivariate Gaussian approximation for P(σ) with `1 or `2

regularization term for precision matrix

Gaussian approximation for P(σ) with a normal-inverse-Wishart prior

Pseudo-likelihood approximation

Adaptive cluster expansion of cross-entropy for sparse Markov random field

. . .



Methods: Mean of characteristic changes (∆κλ) at site i in branch b

Likelihood of an alignment A in a tree T under a codon substitution model Θ : P(A|T ,Θ)

Codon substitutions from κ to λ occur with P(λ|κ, tb ,Θ, θα) for branch length tb .

Substitutions are assumed to occur independently at each site;
P(A|T ,Θ) =

∏
i P(Ai |T ,Θ)

Protein evolution is assumed to be in the stationary state in a time-homogeneous and
-reversible Markov process.
−→ Any node can be regarded as a root node; let us regard the left node vbL of branch b
as a root.

vbL=κ b vbR=λ

fκ
PbL PbR

P(λ|κ,tb,Θ)

∆κλ tb

A1i A2i A3i

ib∆

T
∧

Ai

(A ,T,Θ)i
∧ ∧

∆  ≡ ( . . . , ∆    − ∆  , . . . ) 'i i
−

ib

tb

A1j A2j A3j

jb∆

T
∧

Aj

(A ,T,Θ)
∧ ∧

∆  ≡ ( . . . , ∆    − ∆  , . . . ) 'j j
−

jb

j∧ ∧

P(Ai , vbL = κ, vbR = λ|T ,Θ) ≡ PbL (Ai |vbL = κ,T ,Θ)fκP(λ|κ, tb ,Θ)PbR(Ai |vbR = λ,T ,Θ)(20)

P(Ai |T ,Θ) =
∑
κ

∑
λ

P(Ai , vbL = κ, vbR = λ|T ,Θ) (21)

(T̂ , Θ̂) = arg max
T ,Θ

∏
i

P(Ai |T ,Θ) (22)



Phylogenetic tree:
Topology: Pfam reference tree
Branch lengths: by maximizing likelihood in a mechanistic codon substitution

model

Mean of characteristic changes (∆κλ) by substitutions at site i in branch b:

∆ib(Ai , T̂ , Θ̂) =
∑
κ,λ

∆κ,λP(Ai , vbL = κ, vbR = λ|T̂ , Θ̂)

P(Ai |T̂ , Θ̂, θα)
(23)

Vector of the mean characteristic changes by substitutions at each site:

∆i ≡ (. . . , ∆ib(Ai , T̂ , Θ̂) −

∑
b ∆ib(Ai , T̂ , Θ̂)∑

b 1
, . . .)′ (24)

Correlation coefficient matrix of the feature vectors between sites:

(C)ij ≡ r∆i∆j =
(∆i ,∆j)

‖∆i‖‖∆j‖
(25)

Partial correlation coefficient matrix of the feature vectors between sites:

Cij ≡ rΠ⊥{∆k,i,j }∆iΠ⊥{∆k,i,j }∆j ≡
(Π⊥{∆k,i,j }∆i , Π⊥{∆k,i,j }∆j)

‖Π⊥{∆k,i,j }∆i‖ ‖Π⊥{∆k,i,j }∆j‖
=

− (C−1)ij

((C−1)ii(C−1)jj)1/2
(26)



Characteristic changes accompanied by substitutions whose correlation indicates
coevolution between sites

1 Occurrence of amino acid substitutions: ∆s
κ,λ ≡ 1 − δaκ ,aλ where aκ is the type of

amino acid corresponding to codon κ.

Phylogenetic bias: ∆s
ib ∼ 1 − exp(−µi t̂b) ∝ µi∆

s
•b =⇒ Cij � 0

Most of the phylogenetic bias can be removed from Cij by a linear regression on

∆s
k , (k , i, j), and is not included in Cij .

2 Change of side chain volume: ∆v
κ,λ ≡ side_chain_volumeaλ − side_chain_volumeaκ

3 Change of side chain charge: ∆c
κ,λ ≡ side_chain_chargeaλ − side_chain_chargeaκ

4 Change of hydrogen-bonding capability:

∆hb
κ,λ ≡

acceptor_capabilityaλ−acceptor_capabilityaκ +donor_capabilityaλ−donor_capabilityaκ

5 · · ·
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coevolution between sites

1 Occurrence of amino acid substitutions: ∆s
κ,λ ≡ 1 − δaκ ,aλ where aκ is the type of

amino acid corresponding to codon κ.

Phylogenetic bias: ∆s
ib ∼ 1 − exp(−µi t̂b) ∝ µi∆

s
•b =⇒ Cij � 0

Most of the phylogenetic bias can be removed from Cij by a linear regression on

∆s
k , (k , i, j), and is not included in Cij .

2 Change of side chain volume: ∆v
κ,λ ≡ side_chain_volumeaλ − side_chain_volumeaκ

3 Change of side chain charge: ∆c
κ,λ ≡ side_chain_chargeaλ − side_chain_chargeaκ

4 Change of hydrogen-bonding capability:

∆hb
κ,λ ≡

acceptor_capabilityaλ−acceptor_capabilityaκ +donor_capabilityaλ−donor_capabilityaκ

5 · · ·



Coevolving (lower) versus DI (upper) residue pairs (≤ 5 Å; TP, FP)
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Deep learning method

A ultra-deep neural network has been also developed and applied for
post-processing. (Wang and Sun et al., 2017)

One-dimensional and two-dimensional deep neural networks (DNN)

Each DNN is convolutional residual neural networks; 2D DNN performs 2D
convolutional transformations, with respect to residue position, of pairwise
features such as coevolutional information calculated by the direct coupling
method.

This DNN performs very well, if the output from the direct coupling method is used,
indicating that the connection of neurons must be improved to extract direct site
couplings from one-dimensional sequence information only.



3. In conclusion

I have introduced my research history by focusing particularly on two topics, which
some of you may be interested in.

Nowdays, many people who have the background of information science are
studying in the filed of bioinformatics. However, there are subfields in which few
information scientists study. They are molecular evolution and protein structure.
Thus, teaching/discussing about

statistical methods/algorithms for estimating phylogenetic tree

various methods for predicting contacting residue pairs in protein structure

may be fruitful for us.
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